PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 14 | 1 |

Tytuł artykułu

Isolation and characterization of cellulose-degrading and xylanolytic bacteria from the short-nosed fruit bat Cynopterus sphinx

Warianty tytułu

Języki publikacji

EN

Abstrakty

Cynopterus sphinx is a frugivorous bat also known to feed regularly on leaves. This raises the question whether microorganisms capable of digesting such a diet are present in the gut. In the present study cellulolytic and xylanolytic bacteria were isolated from the intestine of C. sphinx on Berg's agar medium containing carboxymethyl cellulose and xylan. The isolated cultivable cellulose and xylan degrading bacteria were characterized biochemically and identified to be Bacillus sp., Clostridium sp., Streptococcus sp., and Staphylococcus sp. Among the cultivable bacteria from the intestine of the insectivorous Hipposideros fulvus, which was used as a control, no cellulolytic and xylanolytic bacteria could be isolated. We hypothesize that leaves could be a carbohydrate source for bats. By isolating polysaccharide-degrading bacteria from the intestine of C. sphinx, we infer that they help in digestion of xylan and soluble cellulose in their diet.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

14

Numer

1

Opis fizyczny

p.233-239

Twórcy

autor
  • School of Biological Sciences, Centre for Advanced Sciences in Functional Genomics, Mudurai Kamaraj University, Madurai - 625021, India
  • Institute of Anatomy, University of Tuebingen, Osterbergstrasse 3, 72074 Tuebingen, Germany
  • School of Biological Sciences, Centre for Advanced Sciences in Functional Genomics, Mudurai Kamaraj University, Madurai - 625021, India
autor
  • School of Biological Sciences, Centre for Advanced Sciences in Functional Genomics, Mudurai Kamaraj University, Madurai - 625021, India

Bibliografia

  • 1. R. Advani 1982. Feeding, foraging and roosting behaviour of the fruit eating bat and damage in Rajasthan and Gujarat. Säugetierkendliche Mitteilungen, 30: 46–48. Google Scholar
  • 2. R. Advani , and Y. P. Sinha . 1980. Observation of food of Hipposederos [sic] fulvus pallidus Anderson and Rhinolophus lepidus Blyth in Rasjasthan. Comparative Physiology and Ecology, 5: 250–251. Google Scholar
  • 3. A. Alwin Prem Anand , and K. Sripathi . 2004. Digestion of cellulose and xylan by symbiotic bacteria in the intestine of Indian flying fox, Pteropus giganteus. Comparative Biochemistry and Physiology, 139A: 65–69. Google Scholar
  • 4. J. Balasingh , S. S. Issac , and R. Subbaraj . 1993. Tent roosting by frugivorous bats, Cynopterus sphinx (Vahl, 1797) in South India. Current Science, 65: 418. Google Scholar
  • 5. J. Balasingh , A. J. Koliraj , and T. H. Kunz . 1995. Tent construction by the Short-nosed fruit eating bat Cynopterus sphinx (Chiroptera: Pteropodidae) in Southern India. Ethology, 100: 210–229. Google Scholar
  • 6. P Bates , and D. Harrison . 1997. Bats of the Indian Subcontinent. Harrison Zoological Museum, Sevenoaks, Kent, U.K., 258 pp. Google Scholar
  • 7. G. Bertani 2003. Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. Journal of Bacteriology, 186: 595–600. Google Scholar
  • 8. H. R. Bhat 1994. Observation on the food and feeding behaviour of Cynopterus sphinx Vahl (Chiroptera, Pteropodidae) at Pune, India. Mammalia, 58: 363–370. Google Scholar
  • 9. W. Bogdanowicz , M. B. Fenton , and K. Daleszczyk . 1999. The relationships between echolocation calls, morphology and diet of insectivorous bats. Journal of Zoology (London), 243: 381–393. Google Scholar
  • 10. S. E. Courts , 1998. Dietary strategies of the Old World fruit bats (Megachiroptera, Pteropodidae): how do they obtain sufficient protein? Mammal Review, 28: 185–194. Google Scholar
  • 11. M. Delorme , and D. W. Thomas . 1996. Nitrogen and energy requirements of the short-tailed fruit bat (Carollia perspicillata): fruit bats are not nitrogen constrained. Journal of Comparative Physiology, 166B: 427–434. Google Scholar
  • 12. A. Dhillon , J. K. Gupta , and S. Khanna . 2000. Enhanced production, purification and characterization of a novel cellulose poor thermostable, alkali tolerant xylanase from Bacillus circulans AB 16. Process Biochemistry, 35: 849–856. Google Scholar
  • 13. M. S. Ekinci , S. I. Mccrae , and H. J. Flint . 1997. Isolation and over expression of a gene encoding an extracellular β-(1,3-1,4)-glucanase from Streptococcus bovis JB1. Applied and Environmental Microbiology, 63: 3752–3756. Google Scholar
  • 14. V. Elangovan , and G. Marimuthu . 2001. Effect of moon light on the foraging behaviour of a Megachiropteran bat Cynopterus sphinx. Journal of Zoology (London), 253: 347–350. Google Scholar
  • 15. V. Elangovan , G. Marimuthu , and T. H. Kunz . 2001. Temporal patterns of resource use by the short-nosed fruit bat, Cynopterus sphinx (Megachiroptera: Pteropodidae). Journal of Mammalogy, 82: 161–165. Google Scholar
  • 16. S. Ezilvendan 2003. Roost and diet selection in the Indian flying fox, Pteropus giganteus (Megachiroptera). MSc Thesis, Madurai Kamaraj University, Madurai, India, 112 pp. Google Scholar
  • 17. M. W. Fields , S. Mallik , and J. B. Russell . 2000. Fibrobacter succinogenes 885 ferments ballmilled cellulose as fast as cellulobiose until cellulose surface area is limiting. Applied Microbiology and Biotechnology, 54: 570–574. Google Scholar
  • 18. R. G. Gardner , J. E. Wells , J. B. Russell , and D. B. Wilson . 1995. The cellular location of Prevotella ruminicola beta-1,4-D-endoglucanase and its occurrence in other strains of ruminai bacteria. Applied and Environmental Microbiology, 61: 3288–3292. Google Scholar
  • 19. N. Gopukumar , and J. Balasingh . 2002. Nature watch: tentmaking bats. Resonance, 7(7): 63–67. Google Scholar
  • 20. E. Górska , B. Tudek , and S. Russel . 2001. Degradation of cellulose by nitrogen-fixing strain of Bacillus polymyxa. Acta Microbiologica Polonica, 50: 129–137. Google Scholar
  • 21. M. G. Kaufman , and M. J. Klug . 1991. The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera, Gryllidae). Comparative Biochemistry and Physiology, 98A: 117–123. Google Scholar
  • 22. W. J. Kelly , R. V. Asmundson , and D. H. Hopcroft . 1987. Isolation and characterization of a strictly anaerobic, cellulolytic spore former: Clostridium chartatabidum sp. nov. Archives of Microbiology, 147: 169–173. Google Scholar
  • 23. C. H. Kim 1995. Characterization and substrate specificity of an endo-β-1,4-D-glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Applied and Environmental Microbiology, 65: 959–965. Google Scholar
  • 24. C. Korine , Z. Arad , and A. Arieti . 1996. Nitrogen and energy balance of the fruit bat, Rousettus aegyptiaeus, on natural fruit diets. Physiological Zoology, 69: 618–634. Google Scholar
  • 25. T. H. Kunz , and C. A. Diaz . 1995. Folivory in fruit-eating bats, with new evidence from Artibeus jamaicensis (Chiroptera: Phyllostomidae). Biotropica, 27: 106–120. Google Scholar
  • 26. T. H. Kunz , and K. A. Ingalls . 1994. Folivory in bats: an adaptation derived from frugivory. Functional Ecology, 8: 665–668. Google Scholar
  • 27. R. Lamed , J. Naimark , E. Morgenstern , and E. A. Bayer . 1987. Specialized surface structure in cellulolytic bacteria. Journal of Bacteriology, 169: 3792–3800. Google Scholar
  • 28. B. S. Law 1992. The maintenance nitrogen requirements of the Queensland blossom bat (Syconycteris australis) on a sugar pollen diet: is nitrogen a limiting source? Physiological Zoology, 65: 634–648. Google Scholar
  • 29. J. B. Lowry 1989. Green-leaf fractionation by fruit bat is this feeding behaviour a unique nutritional strategy for herbivores? Australian Wildlife Research, 16: 203–206. Google Scholar
  • 30. L. R. Lynd , C. E. Wyman , and T. U. Gerngross . 1999. Biocommodity engineering. Biotechnology Progress, 15: 777–793. Google Scholar
  • 31. L. R. Lynd , P. J. Weimer , W. H. Van Zyl , and I. S. Pretorius . 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66: 506–577. Google Scholar
  • 32. G. L. Miller 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31: 426–428. Google Scholar
  • 33. S Nelson , L. , T. H. Kunz , and S. R. Humphrey . 2005. Folivory in fruit bats: leaves provide a natural source of calcium. Journal of Chemical Ecology, 31: 1683–1691. Google Scholar
  • 34. K. M. Rajan , N. G. Nair , and R. Subbaraj . 1999. Seasonal food preference of the Indian short-nosed fruit bat Cynopterus sphinx (Vahl) (Chiroptera: Pteropodidae). Journal of the Bombay Natural History Society, 9: 24–27. Google Scholar
  • 35. J. Ruby , P. T. Nathan , J. Balasingh , and T. H. Kunz . 2000. Chemical composition of fruits and leaves eaten by short-nosed bat, Cynopterus sphinx. Journal of Chemical Ecology, 26: 2825–2841. Google Scholar
  • 36. J. Ruijssenaars , and S. Hartmans . 2000. Plate screening methods for the detection of polysaccharase producing microorganisms. Applied Microbiology and Biotechnology, 55: 143–149. Google Scholar
  • 37. F. B. Salisbury , and C. W. Ross . 1985. Plant physiology, 3rd edition. Wadsworth Publishing Company, Belmont, California, 540 pp. Google Scholar
  • 38. J. W. Santo Domingo , I. M. Kaufman , M. J. Klug , W. E. Holben , D. Harris , and J. M. Tiedje . 1998. Influence of diet on the structure and function of the bacterial hindgut community of crickets. Molecular Ecology, 7: 761–767. Google Scholar
  • 39. W. H. Schwarz 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology, 56: 634–649. Google Scholar
  • 40. N. B. Simmons 2005. Order Chiroptera. Pp. 312–529, in Mammal species of the World: a taxonomic and geographic reference, 3rd edition ( D. E. Wilson and D. M. Reeder , eds.). The Johns Hopkins University Press, Baltimore, XXXV + 2142 pp. Google Scholar
  • 41. P. H. A. Sneath , N. S. Nair , E. M. Sharpe , and J. G. Holt (eds.). 1986. Bergey's manual of systematic bacteriology, 1st edition. William and Wilkins, Baltimore, Volume 2. Google Scholar
  • 42. J. F. Storz , and T. H. Kunz . 1999. Cynopterus sphinx. Mammalian species, 613: 1–8. Google Scholar
  • 43. L. Stryer 1995. Biochemistry, 4th edition. W. H. Freeman and Company, New York, 1064 pp. Google Scholar
  • 44. R. M. Teather , and P. J. Wood . 1982. Use of Congo red polysaccharide interaction in enumeration of cellulolytic bacteria from bovine rumen. Applied and Environmental Microbiology, 43: 777–780. Google Scholar
  • 45. L. Telek , and F. M. Martin . 1983. Tropical plants for leaf protein concentration. Pp. 81–116, in Leaf protein concentrates ( L. Telek and H. D Graham , eds.). AVA Publishing, Inc., Westport, xxv + 844 pp. Google Scholar
  • 46. P. Tomme , R. A. J. Warren , and N. R. Gikes . 1995. Cellulose hydrolysis by bacteria and fungi. Advances in Microbial Physiology, 37: 1–81. Google Scholar
  • 47. M. A. O. Travino , M. C. W. Rodarte , and A. L. M. Canales . 1989. An endoglucanase from an isolated strain of Bacillus circulans. Applied Microbiology and Biotechnology, 31: 146–149. Google Scholar
  • 48. V. H. Varel , I. M. Robinson , and H. G. Jung . 1987. Influence of dietary fiber on xylanolytic and cellulolytic bacteria of adult pigs. Applied and Environmental Microbiology, 53, 22–26. Google Scholar
  • 49. V. H. Varel , J. T. Yen , and K. K. Kreikemeier . 1995. Addition of cellulolytic Clostridia to the bovine rumen and pig intestinal tract. Applied and Environmental Microbiology, 61: 1116–1119. Google Scholar
  • 50. T. A. Vaughan 1977. Foraging behaviour of the giant leaf nosed bat (Hipposideros commusoni). East African Wildlife Journal, 15: 237–249. Google Scholar
  • 51. R. A. J. Warren 1996. Microbial hydrolysis of polysaccharides. Annual Review of Microbiology, 50: 183–212. Google Scholar
  • 52. T. C. R. White 1993. The inadequate environment: nitrogen and the abundance of animals. Springer-Verlag, Berlin, 425 pp. Google Scholar
  • 53. P. J. Wood 1980. Specificity in the interaction of direct dyes with polysaccharides. Carbohydrate Research, 85: 271–287. Google Scholar

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-af511642-e2de-4d11-b531-e512090efd0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.