PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 11 | 1 |

Tytuł artykułu

Dihydroksyaceton - charakterystyka, zastosowanie, otrzymywanie

Warianty tytułu

EN
Dihydroxyacetone - characteristics, application and receive - a review

Języki publikacji

PL

Abstrakty

PL
Dihydroksyaceton (DHA) jest ketotriozą o właściwościach redukujących. Znajduje zastosowanie głównie w przemyśle spożywczym (substancja słodząca, suplement diety, emulgator, plastyfikator), kosmetycznym (aktywny składnik kremów samoopalających) oraz w medycynie (leczenie bielactwa skóry, komponent biomateriałów tamujących krwotoki). Obecnie dihydroksyaceton wytwarzany jest biotechnologicznie na drodze niecałkowitego utleniania glicerolu przez bakterie octowe z gatunku Gluconobacter oxydans ATCC 621. Enzymem katalizującym tę reakcję jest zależna od PQQ dehydrogenaza glicerolowa (GlyDH). W pracy przedstawiono charakterystykę fizyczną, chemiczną oraz zastosowanie DHA. Opisano również metody produkcji tego związku, które opracowywano i doskonalono na przestrzeni wielu lat.
EN
Dihydroxyacetone (DHA) is ketotriose with reducing properties. It is used mainly in food industry (a sweetener, a dietary supplement, emulsifier, plasticizer), cosmetics (the active ingredient in self-tanning creams) and medicine (treatment of vitiligo desease, a component of biomaterials stopped bleeding). Currently, dihydroxyacetone is produced biotechnologically by incomplete oxidation of glycerol with acetic bacteria using Gluconobacter oxydans ATCC 621 strain. The enzyme catalyzing this reaction is PQQ – dependent glycerol dehydrogenase (GlyDH). The paper presents the physical and chemical characteristic of DHA, its application and receive. It also describes methods for improving the production of this compound, which have been developed over many years.

Wydawca

-

Rocznik

Tom

11

Numer

1

Opis fizyczny

s.17-27,bibliogr.

Twórcy

  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Warszawa

Bibliografia

  • Akin F. J., Marlowe E., 1984. Non-carcinogenicity of dihydroxyacetone by skin painting. J. Environ. Pathol. Toxicol. Oncol., 5, 349-351.
  • Bauer R., Katsikis N., Varga S., Hekmat D., 2005. Study of the inhibitory effect of the product dihydroxyacetone on Gluconobacter oxydans in a semi-continuous two-stage repeated-fed-batch process. Bioprocess. Biosyst. Eng., 5, 37-43.
  • Bianchi C. L., Canton P., Dimitratos N., Porta F., Prati L., 2005. Selective oxidationof glycerol with oxygen using mono and bimetallic catalysts based on Au, Pd and Pt metals. Catal. Today, 102, 203-212.
  • Bicker M., Endres S., Ott L., Vogel H., 2005. Catalytical conversion of carbohydratesin subcritical water: a new chemical process for lactic acid production. J. Mol. Catal.A Chem., 239, 151­157.
  • Błażejak S., Stasiak-Różańska L., Markowski K., Lipińska E., 2011. Zwiększenie zdolności bio­syntezy dihydroksyacetonu przez bakterie Gluconacetobacter xylinus za pomocą mutagenizacji promieniowaniem UV, Acta Sci. Pol. Biotechnol., 10, 17-24.
  • Boontawan A., Stuckey D., 2006. A membrane bioreactor for the biotransformationof alpha-pinene oxide to isonovalal by Pseudomonas fluorescens NCIMB 11671. Appl. Microbiol. Biotechnol., 69, 643-649.
  • Charney W., Montclair N. J., 1978. Process for the production of dihydroxyacetone. USA, Patent nr 4076589.
  • Choquenet B., Couteau C., Paparis E., Coiffard L. J. M., 2009. Foundations and self-tanning products: Do they provide any protection from the sun? J. Dermatol., 36, 587-591.
  • Ciriminna R., Palmisano G., Pina C.D., Rossi M., Pagliaro M., 2006. One-pot electrocatalytic oxidation of glycerol to DHA. Tetrahedron. Lett., 47, 6993-6695.
  • Claret C., Bories A., Soucaille P., 1992. Glycerol inhibition of growth and dihydroxyacetone production by Gluconobacter oxydans. Current Microbiol., 25, 149-155.
  • Cummings T.F., 2004. The treatment of cyanide poisoning. Occup. Med., 54, 82-85.
  • Dimitratos N., Francesca P., Prati L., 2005. Au, Pd (mono and bimetallic) catalysts supported on graphite using the immobilisation method synthesis and catalytic testing for liquid phase oxidation of glycerol. Appl. Catal. A Gen., 291, 210-214.
  • Djuranovic S.P., Kun J.F. J., Schultz J.E., Beitz E., 2006. Dihydroxyacetone and methylglyoxal as permeants of the Plasmodium aquaglyceroporin inhibit parasite proliferation. Biochim. Biophys. Act. 1758, 1012-1017.
  • Draelos M.D., Zoe D., 2002. Self-Tanning Lotions: Are they a healthy way to achieve a tan? Am. J. Clin. Dermatol., 3, 317-318.
  • Dubin A., Anioł A., Bielecki S., Borowicz P., Czarnik M., Kur J. W., Kuźmierkiewicz W., Pietrucha T., Sławeta R., Świtoński M., Torbicz W., Wieczorek M., 2007. Stan i kierunk i rozwoju biogospodarki. MNiSW, Warszawa, 100-108.
  • Durand M., 1995. Method for the protection of dihydroxyacetone, a dihydroxyacetone protected by this method and cosmetic product containing such a protected dihydroxyacetone. USA, Patent nr 5458872.
  • Enders D., Voith M., Lenzen A., 2005. The dihydroxyacetone unit-a versatile C3 building block in organic synthesis. Angew. Chem. Int. Ed., 44, 1304-1325.
  • Fakley M.E., Lindsay R.J., 1988. Isolation process. USA, Patent nr 4775448.
  • Ferroni E. L., Di Tella V., Jeske R., 1999. Structures of dihydroxyacetone.J. Org. Chem., 64, 4943­4945.
  • Fesq H., Brockow K., Strom K., Mempel M., Ring J., Abeck D., 2001. Dihydroxyacetone in a New Formulation - A Powerful Therapeutic Option in Vitiligo. Dermatol., 203, 241-243.
  • Fu J.M., Dusza S.W., Halpern A.C., 2004. Sunless tanning. J. Am. Acad. Dermatol., 50, 706-713.
  • Gatgens C., Degner U., Bringer-Meyer S., Herrmann U., 2007. Biotransformation of glycerol to dihydroxyacetone by recombinant Gluconobacter oxydans DSM 2343. Appl. Microbiol. Bio- technol., 76, 553-559.
  • Gehrer E., Harder W., Vogel H., Knuth B., Ebel K., Groening C., 1995. Preparationof dihydroxy­acetone. USA, Patent nr 5410089.
  • Gillis M., Kersters K., Goselle F., Swings J., De Ley A., MacKenezie A.R., Bousfield I.J., 1983. Rediscovery of Bertrand's Sorbose Bacterium (Acetobacter aceti subsp.xylinum): Proposal to Designate NCIB 11664 in Place of NCIB 4112 (ATCC 23767)as the Type Strain of Acetobactev aceti subsp. xylinum. Int. J. Syst. Ter., 33, 122-124.
  • Green S.R., Whalen E.A., Molokie E., 2004. Dihydroxyacetone: Production and uses. J. Biochem. Microbiol. Technol., 3, 351-355.
  • Hauge J., King T., Cheldelin V., 1955. Alternate conversions of glycerolto dihydroxyacetone in Acetobacter suboxydans. J. Biol. Chem., 214, 1-9.
  • Hekmat D., Bauer R., Fricke J., 2003. Optimization of the microbial synthesisof dihydroxyacetone from glycerol with Gluconobacter oxydans. Bioproc. Biosyst. Eng., 26, 109-113.
  • Henderson P. W., Kadouch D. J., Singh S. P., Zawaneh P. N., Weiser J., Yazdi S., Weinstein A., Krotscheck U., Wechsler B., Putnam D., Spector J. A. J., 2010. A rapidly resorbable hemostatic biomaterial based on dihydroxyacetone. Biomed. Mater. Res. A., 93, 776-782.
  • Hu W., Knight D., Lowry B., Varma A., 2010a. Selective Oxidation of Glycerolto Dihydroxyacetone over Pt-Bi/C Catalyst: Optimization of Catalyst and Reaction Conditions. Ind. Eng. Chem. Res., 49, 10876-10882.
  • Hu Z.C., Liu Z.Q., Zheng Y.G., Shen Y.C., 2010b. Production of 1,3-Dihydroxyacetone from Glycerol by Gluconobacter oxydans ZJB09112. J. Microbiol. Biotechnol., 20, 340-345.
  • Ivy J.L., 1998. Effect of pyruvate and dihydroxyacetone on metabolism and aerobic endurance capacity. Med. Sci. Sports Exerc., 30, 837-843.
  • Klein J., Rosenberg M., Markos J., Dolgos O., Kroslak M., Kristofikova L., 2002. Biotransformation of glucose to gluconic acid by Aspergillus niger: Study of mass transfer in an airlift biore- actor. Biochem. Eng. J., 10, 197-205.
  • Kluyver A.J., 1931. Process for the preparation of organic compounds by meansof bacterial oxida­tion. USA, Patent nr 1833716.
  • Lewis R.J. Sr., 2001. Hawley's Condensed Chemical Dictionary 14th Edition. John Wiley & Sons, Inc. New York, 383-390.
  • Lewis R.J. Sr., 2004. Sax's Dangerous Properties of Industrial Materials. Wiley & Sons, Inc. Hobo- ken, New York, 2792.
  • Li M.H., Wu J., Liu X., Lin J.P., Wei D.Z., Chen H., 2010a. Enhanced productionof dihydroxy- acetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydroge- nase-deficient mutant of Gluconobacter oxydans. Bioresour. Technol., 101, 8294-8299.
  • Li M., Wu J., Lin J., Wei D., 2010b. Expression of Vitreoscilla Hemoglobin Enhances Cell Growth and Dihydroxyacetone Production in Gluconobacter oxydans. Curr. Microbiol., 61, 370-375.
  • Lide D.R., Milne G. W.A., 1994. Handbook of Data on Organic Compounds. vol.1, CRC Press, Inc. Boca Raton, 4475-4480.
  • Ma L., Lu W., Xia Z., Wen J., 2010. Enhancement of dihydroxyacetone productionby a mutant of Gluconobacter oxydans. Biochem. Eng. J., 49, 61-67.
  • Maier U., Buchs J., 2001, Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem. Eng. J., 7, 99-106.
  • Mason E. H., Hill E., 1926. Dihydroxyacetone Studies I. Its Respiratoryand Carbohydrate Metabo­lism in Normal Men. J. Clin. Invest., 2, 521-532.
  • Mersch-Sundermann V., Schneider U., Klopman G., Rosencrantz H. S., 1994. SOS induction in Escherichiacoli and Salmonella mutagenicity: a comparison using 330 compounds. Mutagen., 9, 205-224.
  • Mishra R., Jain S.R., Kumar A., 2008. Microbial production of dihydroxyacetone. Biotechnol. Adv., 26, 293-303.
  • Misterska M., Szulczynska-Gabor J., Zaba R., 2009. Etiopatogeneza, obraz kliniczny i leczenie bielactwa. Post. Dermatol. Alergol., 4, 212-223.
  • Nabe K., Izuo N., Yamada S., Chibata I., 1979. Conversion of Glycerolto Dihydroxyacetone by Im­mobilized whole cells of Acetobacter xylinum. Appl. Enviro. Microbiol., 38, 1056-1060.
  • Nguyen B.C., Kochevar I.E., 2003a. Factors influencing sunless tanning with dihydroxyacetone. Br. J. Dermatol., 149, 332-340.
  • Nguyen B.C., Kochevar I.E., 2003b. Influence of hydration on dihydroxyacetone-induced pigmen­tation of stratum corneum. J. Invest. Dermatol., 120, 655-661.
  • Niknahad H., Ghelichkhani E., 2002. Antagonism of cyanide poisoningby dihydroxyacetone. Toxi­col Lett., 132, 95-100.
  • Obeid O.A., Jamal Z.M., Hwalla N., Emery P.W., 2006. The effect of glutamine and dihydroxy- acetone supplementation on food intake, weight gain, and postprandial glycogen synthesis in female Zucker rats. Nutr., 22, 794-801.
  • Ohrem H.L., Haftung B., 1998. Microbial process fort he preparationof dihydroxyacetone with recycling of biomass. USA, Patent nr 5770411.
  • Omar A., Bittar S., Hwalla N., 2005. Effect of diet supplementation with glutamine, dihydroxy- acetone, and leucine on food intake, weight gain, and postprandial glycogen metabolism of rats. Nutr., 21, 224-229.
  • O'Neil M.J., 2001. The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Whitehouse Station, New York, 560.
  • Pagliaro M., Ciriminna R., Kimura H., Rossi M., Pina C. D., 2007. From Glycerolto Value-Added Products. Angew. Chem. Int. Ed., 46, 4434-4440.
  • Painter R.M., Pearson D.M., Waymonth R.M., 2010. Selective catalytic oxidationof glycerol to dihydroxyacetone. Angew. Chem. Int. Ed., 49, 9456-9459.
  • Petersen A.B., Wulf H.C., Gniadecki R., Gajkowska B., 2004. Dihydroxyacetone, the active brown­ing ingredient in sunless tanning lotions, induces DNA damage, cell-cycle blok and apoptosis in cultured HaCaT keratinocytes. Mutat. Res., 560, 173-186.
  • Pham H.N., De Marini D.M., Brockmann H.E., 1980. Mutagenicity of skin tanning lotions. J. En­viron. Pathol. Toxicol., 3, 227-231.
  • Raport ACNielsen, 2006. Rynek kosmetyków w Polsce, www.acnielsen.pl
  • Rogers C.J., 2005. Spray-on tanning. Aesth. Surg. J., 25, 413-415.
  • Schmid D., Belser E., Zulli F., 2007. Self-tanning based on stimulation of melanin biosynthesis. Cosm. Toilet., 6, 55-60.
  • Shipar A.H., 2006. Formation of the Heyns rearrangement products in dihydroxyacetone and glycine Maillard reaction: A computational study. Food Chem. 97, 231-243.
  • Ślepokura K., Lis T., 2004. Crystal structures of dihydroxyacetone and derivatives. Carbo. Res., 339, 1995-2000.
  • Stasiak-Różańska L., Błażejak S., Miklaszewska A., 2011. Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone, Acta Sci. Pol., Technol. Aliment., 10, 35-49.
  • Stanko R.T., Arch J.E., 1996. Inhibition of regain in body weight and fat with addition of 3-carbon compounds to the diet with hyperenergetic refeeding after weight reduction. Int. J. Obes. Relat. Metab. Disord., 20, 925-930.
  • Stanko R.T., Diven W.F., Robertson R.J., Spina R.J., Galbreath R.W., Reilly J.J., Goss F.L., 1993. Amino acid arterial concentration and muscle exchange during submaximal arm and leg exer­cise: the effect of dihydroxyacetone and pyruvate. J. Sports Sci., 11, 17-23.
  • Taylor C.R., Kwangsukstith C., Wimberly J., Kollias N., Anderson R. R., 1999. Turbo-PUVA: dihydroxyacetone-enhanced photochemotherapy for psoriasis: a pilot study. Arch. Dermatol., 135, 540-544.
  • Tkać J., Navratil M., Sturdik E., Gemeiner P., 2001. Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enz. Microbiol. Technol., 28, 383-388.
  • Utesch D., Splittgerber J., 1996. Bacterial photomutagenicity testing: distinction between direct, enzyme-mediated and light-induced events. Mutat. Res., 361, 41-48.
  • Uzcategui N.L., Carmona-Gutierrez D., Denninger V., Schoenfeld C., Lang F., Figarella K., Duszenko M., 2007. Antiproliferative effect of dihydroxyacetone on Trypanosoma brucei bloodstream forms: cell cycle progression, subcellular alterations, and cell death. Antimicrob. Agents Chemother., 51, 3960-3968.
  • Virtanen A.I., Nordlund M., 1933. An improve method for the preparationof dihydroxyacetone. Biochem. J., 27, 1060-1064.
  • Weiser J. R., Zawaneh P. N., Putnam D., 2011. Poly(carbonate-ester)s of Dihydroxy-acetone and Lactic Acid as Potential Biomaterials. Biomacromolec., 12, 977-986.
  • Xu X., Chen X., Jin M., Wu X., Wang X., 2009. Advance in dihydroxyacetone production by mi­crobial fermentation. Chin. J.Biotechnol., 25, 903-908.
  • Yamaguchi T.,1982. Mutagenicity of trioses and methyl glyoxal on Salmonella typhimurium. Ag- ric. Biol. Chem., 46, 849-851.
  • Yourick J.J., Koenig M.L., Yourick D.L., Bronaugh R.L., 2004. Fate of chemicalsin skin after der­mal application: does the in vitro skin reservoir affect the estimate of systemic absorption? Toxicol. Appl. Pharmacol., 195, 309-320.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ae299301-7397-4412-874f-754382ffce9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.