PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 72 |

Tytuł artykułu

Proteolytic activity and nitrogen remobilisation in senescing leaves of phenological forms of Fagus sylvatica

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Leaf senescence allows plants to remobilise and use the same nitrogen repeatedly and is closely linked to autumn phenology. The timing of leaf senescence affects the growth rate and survival of trees due to the association between senescence and the remobilisation of nutrients, particularly nitrogen. The present study compares protein degradation dynamics and nitrogen remobilisation in early, intermediate and late phenological forms of beech trees (Fagus sylvatica L.). Specimens of phenological forms were marked and examined in 2005 and 2008. Leaf samples were collected from August to October during each of these years, and a biochemical analysis and a determination of proteolytic enzyme activity were conducted. The early phenological form showed protein degradation with three clearly indicated phases, whereas in the late form, protein degradation was stable with a constant decrease. The phenological forms differed significantly in their C/N ratios, which increased from approximately 20 in August to 37.5, 35 and 32 for the early, intermediate and late forms, respectively, at the end of leaf senescence. The date of the sudden drop in temperature had a decisive effect on the beginning of leaf senescence. Temperature has a greater effect on protein degradation and the protein and nitrogen resorption efficiency in the early form than in the late form. The trees that began to senesce the earliest exhibited the highest resorption of nitrogen compounds. Senescence led to an increase in proteolytic activity. Aminopeptidase activity was highest at the beginning of senescence, while endo- and carboxypeptidase activity was highest in the middle of senescence. The early form had the highest activity levels for all peptidase types. These results indicate that beech trees that differ in their autumn senescence timing display different nitrogen remobilisation efficiencies. This efficiency depended on the length of leaf senescence, peptidase activity and the sensitivity of particular phenological forms to temperature changes.

Wydawca

-

Czasopismo

Rocznik

Tom

72

Opis fizyczny

p.163-176,fig.,ref.

Twórcy

autor
  • Department of Forest Pathology, Mycology and Tree Physiology, Agricultural University in Krakow, Al.29-Listopada 46, 31-425 Krakow, Poland

Bibliografia

  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84: 597–608. http://dx.doi.org/10.2307/2261481
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254. http://dx.doi.org/10.1016/0003-2697(76)90527-3
  • Brouquisse R., Masclaux C., Feller U., Raymond P. 2001. Protein hydrolysis and nitrogen remobilization in plant life and senescence. In: Plant nitrogen. Lea P., Morot-Gaudry J.F. (eds.). Springer, Berlin, pp. 275–293. http://dx.doi.org/10.1007/978-3-662-04064-5_11
  • Buchanan-Wollaston V., Earl S., Harrison E., Mathas E., Navabpour S., Page T., Pink D. 2003. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnology Journal 1: 3–22. http://dx.doi.org/10.1046/j.1467-7652.2003.00004.x
  • Chmura D.J., Rożkowski R. 2002. Variability of beech provenances in spring and autumn phenology. Silvae Genetica 51: 123–127.
  • Coleman G.D., Englert J.M., Chen T.H.H., Fuchigami, L.H. 1993. Physiological and environmental requirements for poplar (Populus deltoides) bark storage protein degradation. Plant Physiology 102: 53–59. http://dx.doi.org/10.1104/pp.102.1.53
  • Cooke J.E.K., Weih M. 2005. Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology. New Phytologist 167: 19–30. http://dx.doi.org/10.1111/j.1469-8137.2005.01451.x
  • Cote B., Fyles J.W., Djalilvand H. 2002. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals Forest Science 59: 275–281. http://dx.doi.org/10.1051/forest:2002023
  • Couturier J., Doidy J., Guinet F., Wipf D., Blaudez D., Chalot M. 2010. Glutamine, arginine and the amino acid transporter Pt-CAT11 play important roles during senescence in poplar. Annals of Botany 105: 1159–1169. http://dx.doi.org/10.1093/aob/mcq047
  • Delpierre N., Dufrene E., Soudani K., Ulrich E., Cecchini S., Boe J., Francois C. 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology 149: 938–948. http://dx.doi.org/10.1016/j.agrformet.2008.11.014
  • Diaz C., Purdy S., Christ A., Morot-Gaudry J.F., Wingler A., Masclaux-Daubresse C. 2005. Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. Plant Physiology 138: 898–908. http://dx.doi.org/10.1104/pp.105.060764
  • Dolnicki A., Kraj W. 2001. Leaf morphology and the dynamics of frost-hardiness of shoots in two phenological forms of European beech (Fagus sylvatica L.) from Southern Poland. Electronic Journal of Polish Agricultural Universities 4,
  • (http://www.ejpau.media.pl/volume4/issue2/forestry/art-01.html).
  • Duchesne L., Ouimet R., Camire C., Houle D. 2001. Seasonal nutrient transfers by foliar resorption, leaching, and litter fall in a northern hardwood forest at Lake Clair Watershed, Quebec, Canada. Canadian Journal of Forest Research 31: 333–344. http://dx.doi.org/10.1139/x00-183
  • Dyckmans J., Flessa H. 2001. Influence of tree internal N status on uptake and translocation of C and N in beech: a dual C-13 and N-15 labeling approach. Tree Physiology 21: 395–401. http://dx.doi.org/10.1093/treephys/21.6.395
  • Estrella N., Menzel A. 2006. Responses of leaf colouring in four deciduous tree species to climate and weather in Germany. Climate Research 32: 253–267. http://dx.doi.org/10.3354/cr032253
  • Fang J., Lechowicz M.J. 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography 33: 1804–1819. http://dx.doi.org/10.1111/j.1365-2699.2006.01533.x
  • Feller U., Fischer A. 1994. Nitrogen-Metabolism in Senescing Leaves. Critical Reviews in Plant Sciences 13: 241–273. http://dx.doi.org/10.1080/07352689409701916
  • Fracheboud Y., Luquez V., Bjorken L., Sjodin A., Tuominen H., Jansson S. 2009. The control of autumn senescence in European aspen. Plant Physiology 149: 1982–1991. http://dx.doi.org/10.1104/pp.108.133249
  • Gan S. 2003. Mitotic and postmitotic senescence in plants. Science of Aging Knowledge Environment 38: RE7.
  • Gan S.S., Amasino R.M. 1997. Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiology 113: 313–319.
  • Guiboileau A., Sormani R., Meyer C., Masclaux-Daubresse C. 2010. Senescence and death of plant organs: Nutrient recycling and developmental regulation. Comptes Rendus Biologies 333: 382–391. http://dx.doi.org/10.1016/j.crvi.2010.01.016
  • Hayashi H., Chino M. 1990. Chemical-composition of phloem sap from the uppermost internode of the rice plant. Plant and Cell Physiology 31: 247–251.
  • Himelblau E., Amasino R.M. 2001. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology 158: 1317–1323. http://dx.doi.org/10.1078/0176-1617-00608
  • Hortensteiner S., Feller U. 2002. Nitrogen metabolism and remobilization during senescence. Journal of Experimental Botany 53: 927–937. http://dx.doi.org/10.1093/jexbot/53.370.927
  • Howe G.T., Aitken S.N., Neale D.B., Jermstad K.D., Wheeler N.C., Chen T.H.H. 2003. From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Canadian Journal of Botany 81: 1247–1266. http://dx.doi.org/10.1139/b03-141
  • Huffaker R.C. 1990. Proteolytic activity during senescence of plants. New Phytologist 116: 199–231. http://dx.doi.org/10.1111/j.1469-8137.1990.tb04710.x
  • Keskitalo J., Bergquist G., Gardestrom P., Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiology 139: 1635–1648. http://dx.doi.org/10.1104/pp.105.066845
  • Kraj W., Grad B. 2013. Seasonal dynamics of photosynthetic pigment, protein and carbohydrate contents in Pinus sylvestris L. seedlings inoculated with Hebeloma crustuliniforme and Laccaria bicolor. Journal of Plant Nutrition 36: 633–650. http://dx.doi.org/10.1080/01904167.2012.754035
  • Lichtenthaler H.K., Wellburn A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11: 591–592.
  • Lim P.O., Kim H.J., Nam H.G. 2007. Leaf senescence. Annual Review of Plant Biology 58: 115–136. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105316
  • Lin J.F., Wu S.H. 2004. Molecular events in senescing Arabidopsis leaves. Plant Journal 39: 612–628. http://dx.doi.org/10.1111/j.1365-313X.2004.02160.x
  • Marschner H. 1995. Mineral nutrition of higher plants. Academic Press, London.
  • Masclaux C., Quillere I., Gallais A., Hirel B. 2001. The challenge of remobilisation in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Annals of Applied Biology 138: 69–81. http://dx.doi.org/10.1111/j.1744-7348.2001.tb00086.x
  • Menzel A., Fabian P. 1999. Growing season extended in Europe. Nature 397: 659. http://dx.doi.org/10.1038/17709
  • Millard P., Grelet G.-A. 2010. Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiology 30: 1083–1095. http://dx.doi.org/10.1093/treephys/tpq042
  • Niinemets U., Tamm U. 2005. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology 25: 1001–1014. http://dx.doi.org/10.1093/treephys/25.8.1001
  • Nooden L.D., Guiamet J.J., John I. 1997. Senescence mechanisms. Physiology Plantarum 101: 746–753. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01059.x
  • Paule L. 1995. Gene conservation in European beech (Fagus sylvatica L.). Forest Genetics 2: 161–170.
  • Quirino B.F., Noh Y.S., Himelblau E., Amasino R.M. 2000. Molecular aspects of leaf senescence. Trends in Plant Science 5: 278–282. http://dx.doi.org/10.1016/S1360-1385(00)01655-1
  • Rennenberg H., Kreutzer K., Papen H., Weber P. 1998. Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. New Phytologist 139: 71–86. http://dx.doi.org/10.1046/j.1469-8137.1998.00181.x
  • Rolland F., Baena-Gonzalez E., Sheen J. 2006. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annual Review of Plant Biology 57: 675–709. http://dx.doi.org/10.1146/annurev.arplant.57.032905.105441
  • Roulin S., Feller U. 1998. Light-independent degradation of stromal proteins in intact chloroplasts isolated from Pisum sativum L. leaves: requirement for divalent cations. Planta 205: 297–304. http://dx.doi.org/10.1007/s004250050324
  • Schuster C., Estrella N., Menzel A. 2013a. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria. Plant Biology 16: 332–344. http://dx.doi.org/10.1111/plb.12071
  • Schuster C., Kirchner M., Jakobi G., Menzel A. 2013b. Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica. International Journal of Biometeorology 58: 485–498. http://dx.doi.org/10.1007/s00484-013-0709-0
  • Smart C.M. 1994. Gene expression during leaf senescence. New Phytologist 126: 419–448. http://dx.doi.org/10.1111/j.1469-8137.1994.tb04243.x
  • Sokal R.R., Rohlf F.J. 1995. Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New York.
  • Stachak A. 1965. Fenologia buka zwyczajnego na tle warunków siedliskowych w Puszczy Bukowej pod Szczecinem w latach 1957–1961. Szczecińskie Towarzystwo Naukowe, Wydział Nauk Przyr.-Roln., Szczecin, pp. 1–100.
  • Škvareninová J., Snopková Z. 2011. The development of phenological stages of European beech (Fagus sylvatica L.) in Slovakia during the period of 1996–2010. In: Šiška B., Hauptvogl M., Eliašová M. (eds.). Bioclimate: Source and Limit of Social Development International Scientific Conference, 6–9 September 2011, Topolčianky, Slovakia.
  • Thomas H., Stoddart J.L. 1980. Leaf senescence. Annual Review of Plant Physiology 31: 83–111. http://dx.doi.org/10.1146/annurev.pp.31.060180.000503
  • Vitasse Y., Delzon S., Bresson C.C., Michalet R., Kremer A. 2009. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research 39: 1259–1269. http://dx.doi.org/10.1139/X09-054
  • Wang L., Ibrom A., Korhonen J.F.J., Arnoud Frumau K.F., Wu J., Pihlatie M., Schjoerring J.K. 2013. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies. Biogeosciences 10: 999–1011. http://dx.doi.org/10.5194/bg-10-999-2013
  • Yamada K., Matsushima R., Nishimura M., Hara-Nishimura I. 2001. A slow maturation of a cysteine protease with a granulin domain in the vacuoles of senescing Arabidopsis leaves. Plant Physiology 127: 1626–1634. http://dx.doi.org/10.1104/pp.010551
  • Yang L., Mickelson S., See D., Blake T.K., Fischer A.M. 2004. Genetic analysis of the function of major leaf proteases in barley (Hordeum vulgare L.) nitrogen remobilization. Journal of Experimental Botany 55: 2607–2616. http://dx.doi.org/10.1093/jxb/erh267
  • Yasumura Y., Hikosaka K., Matsui K., Hirose T. 2002. Leaf-level nitrogen-use efficiency of canopy and understorey species in a beech forest. Functional Ecology 16: 826–834. http://dx.doi.org/10.1046/j.1365-2435.2002.00691.x
  • Yokoyama S., Hiramatsu J. 2003. A modified ninhydrin reagent using ascorbic acid instead of potassium cyanide. Journal of Bioscience and Bioengineering 95: 204–205. http://dx.doi.org/10.1016/S1389-1723(03)80131-7

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ad68d231-1d51-40f8-95b9-ae4ba069b1bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.