PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 6 |

Tytuł artykułu

Geostatistical approach to assessment of spatial distribution of groundwater quality

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A large portion of the water requirements of Konya, Turkey, is supplied by 200 groundwater wells. The quality of this groundwater was determined by taking samples from 156 of the wells within a study area of 427.5 km2. The locations of the wells were obtained using a hand-held global positioning system (GPS) receiver. The purposes of this investigation were to provide an overview of current groundwater quality and to determine spatial distribution of groundwater quality parameters in the study area. The geostatistical analyst extension module of ArcGIS was used for exploratory data analysis, semivariogram model selection, cross-validation, and development of a distribution pattern of groundwater quality parameters such as pH, electrical conductivity, Cl¯, SO4 -2, hardness, and NO3¯ concentrations. The ordinary Kriging (OK) method was used to produce the spatial patterns of water quality over the study area. The result of OK interpolation showed that higher chloride, sulfate, conductivity and hardness concentrations are clearly situated in the northeast of the study area. Concentrations of groundwater quality parameters were compared with World Health Organization, U.S. Environment Protection Agency, and Turkish Standards Institute drinking water guidelines.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

18

Numer

6

Opis fizyczny

p.1073-1082,fig.,ref.

Twórcy

autor
  • Department of Environmental Engineering, Selcuk University, 42079, Konya, Turkey

Bibliografia

  • 1. KUMAR A., MAROJU S., BHAT A. Application of ArcGIS Geostatistical Analyst for Interpolating Environmental Data from Observations, Environmental Progress, 26, (3), 220, 2007.
  • 2. ISAAKS E.H., SRIVASTAVA R.M. An Introduction to Applied Geostatistics, New York: Oxford Univ Press, 1989.
  • 3. GOOVAERTS P. Geostatistics for natural resources evaluation. New York: Oxford Univ Pres, 1997.
  • 4. HE J.Y., JIA X. ArcGIS geostatistical analyst application in assessment of MTBE contamination, ESRI User Conference 2004, Fremont, CA. Available at: http://gis.esri.com/library/userconf/proc04/docs/pap1628.pdf
  • 5. LIU X., WU J., XU J. Characterizing the Risk Assessment of Heavy Metals and Sampling Uncertainty Analysis in Paddy Field by Geostatistics and GIS, Environmental Pollution, 141, 257, 2005.
  • 6. SARANGI A., COX C. A., MADRAMOOTOO C. A. Geostatistical Mmethods for Prediction of Spatial Variability of Rainfall in a Mountainous Region, Transactions of ASAE 48, (3), 943, 2005.
  • 7. SARANGI A., MADRAMOOTOO C. A., ENRIGHT P., CHANDRASEKHARAN H. Prediction of Spatial Variability of Phosphorous Over The St-Esprit watershed, Water, Air, and Soil Polluiton, 48, (3), 943, 2005.
  • 8. HU K., HUANG Y., LI H., LI B., CHEN D., WHITE R.E. Spatial Variability of Shallow Groundwater Level, Electrical Conductivity and Nitrate Concentration, and Risk Assessment of Nitrate Contamination in North China Plain. Environment International, 31, 896, 2005.
  • 9. LADO L.R., POLYA D., WINKEL L., BERG M., HEGAN A. Modelling Arsenic Hazard in Cambodia: A Geostatistical Approach Using Ancillary Data, Applied Geochemistry, 23, 3010, 2008.
  • 10. BUCHANAN S., TRIANTAFILIS J. Mapping Water Table Depth using Geophysical and Environmental Variables, Groundwater, 47, (1), 80, 2009.
  • 11. WOO K.W., JO J.H., BASU P.K., AHN J.S. Stres intensity factor by p-adaptive refinement based on ordinary Kriging interpolation, Finite Elements in Analysis and Design, 45, 227, 2009.
  • 12. ZIMMERMAN D., PAVLIK C., RUGGLES A., ARMSTRONG M.P. An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting, Mathematical Geology, 31, (4), 375, 1999.
  • 13. POZDNYAKOVA L., ZHANG R. Geostatistical Analyses of Soil Salinity in a Large Field, Precision Agriculture, 1, 153, 1999.
  • 14. ZHU H.C., CHARLET J.M., DOREMUS P. Kriging Radon Concentrations of Groundwaters in Western Ardennes, Environmetrics, 7, 513, 1996.
  • 15. ZHU H.C., CHARLET J.M., POFFIJN A. Radon Risk Mapping in Southern Belgium: an Application of Geostatistical and GIS Techniques, The Science of the Total Environment, 272, 203, 2001.
  • 16. D’AGOSTINO V., GREENE E.A, PASSARELLA G., VURRO M. Spatial and Temporal Study of Nitrate Concentration in Groundwater by Means of Coregionalization, Environmental Geology, 36, (3-4), 285, 1998.
  • 17. APHA, AWWA, WPCF.: Standard Methods for the Examination of Water and Wastewater. 16th Edition, Washington, USA, 1985.
  • 18. APHA, AWWA, WPCF: Standard Methods for the Examination of Water and Wastewater. 14th Edition, Method 419-D, Newyork, USA, 1976.
  • 19. STEIN M.L. Interpolation of Spatial Data: Some Theory for Kriging, Springer Verlag, 1999.
  • 20. NINYEROLA M., PONS X., ROURE J.M. A Methodological Approach of Climatological Modelling of Air Temperature and Precipitation Through GIS Techniques, International Journal of Climatology, 20, 1823, 2000.
  • 21. YAMAMOTO J.K. An Alternative Measure of the Reliability of Ordinary Kriging Estimates, Mathematical Geology, 32, (4), 489, 2000.
  • 22. GRINGARTEN E., DEUTSCH C.V. Teacher’s Aide Variogram Interpretation and Modeling. Mathematical Geology, 33, (4), 507, 2001.
  • 23. JOHNSTON K., HOEF J.M.V., KRIVORUCHKO K., LUCAS N. Using ArcGIS Geostatistical Analyst. ESRI. 380 New York Street. Redlands, CA 92373-8100, USA, 2001.
  • 24. TSE: Drinking Water Turkish Standards, Turkish Standards (TSE-266), Ankara, 1997.
  • 25. WHO (World Health Organization): Guidelines for Drinking Water Quality, WHO, Geneva, 1999.
  • 26. EPA (U.S. Environmental Protection Agency).: National Primary Drinking Water Regulations, 2001.
  • 27. SAWYER C.N., MCCARTY P.L. Chemistry for Environmental Engineering, Mc-Graw Hill, NY, 1978.
  • 28. HUDAK PAUL F., Sulfate and chloride concentrations in Texas aquifers. Environment International, 26, (1-2), 55, 2000.
  • 29. FETTER C.W. Contaminant Hydrogeology, Prentice Hall, USA, 1999.
  • 30. EPA (U.S. Environmental Protection Agency).: Health Effects from Exposure to High Levels of Sulfate in Drinking Water Study, Office of Water, EPA 815-R-99-001, 1999.
  • 31. HUDAK, PAUL F., Water hardness and sodium trends in Texas aquifers, Environmental Monitoring and Assessment, 68, 177, 2001.
  • 32. WHO (World Health Organization): Health Hazards from Nitrates in Drinking Water, WHO, Regional Office for Europe, 1985.
  • 33. EPA (U.S. Environmental Protection Agency).: Wellhead Protection: A Guide for Small Communities, Office of Research and Development Office of Water, Washington, DC., EPA/625/R-93/002, 1993.
  • 34. FYTIANOS K., CHRISTOPHORIDIS C. Nitrate, Arsenic and Chloride Pollution of Drinking Water in Northern Greece. Elaboration by Applying GIS, Environmental Monitoring and Assessment, 93, (1-3), 55, 2004.
  • 35. VINTEN A.J.A., DUNN S.M. Assessing the Effects of Land Use on Temporal Change in Well Water Quality in a Designated Nitrate Vulnerable Zone, The Science of the Total Environment, 265, 253, 2001.
  • 36. LEVALLOIS P., THÉRIAULT M., ROUFFIGNAT J., TESSIER S., LANDRY R., AYOTTE P., GIRARD M., GINGRAS S., GUAVIN D., CHIASSON C. Groundwater Contamination by Nitrates Associated with Intensive Potato Culture in Quebec, The Science of the Total Environment, 217, 91, 1998.
  • 37. NAS, B., BERKTAY, A., Groundwater contamination by nitrates in the city of Konya, (Turkey): A GIS perspective. Journal of Environmental Management, 79, (1), 30, 2006.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ad642667-1bac-477b-b73e-a1c6b7bf55a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.