EN
We dedicate this paper to Curt P. Richter, father of the study of salt appetite, who died recently at the age of 94. Richter first demonstrated that the adrenalectomized rat’s voracious appetite for salt kept it alive (1936) and showed the same in humans (1940). Our first paper in 1955 demonstrated that salt appetite was an innate response to salt depletion. Since then, we have pursued the notion that the neuroendocrine consequences of sodium depletion create a brain state that raises salt appetite. In Epstein’s laboratory, it was shown that angiotensin and aldosterone, the hormones of salt retention in the periphery, act synergistically in the brain to produce salt appetite in the rat. Block either hormone and the appetite is reduced by half; block both and the appetite is eliminated despite severe bodily need. With repeated depletions or treatments of the brain with angiotensin and aldosterone, salt ingestion increases, reaching an asymptote by the third depletion. Need-free intake of NaCI also increaes, especially in female rats which ingest more NaCI than male rats. In Stellar’s laboratory, running speed to salt solutions in a runway is used as a measure of salt appetite. When the appetite is raised with large doses of DOCA, a mimic of aldosterone, rats run rapidly for a taste of strong salt solutions as high as 24% (almost 4 molar). Using ingestion as a measure, the role of the atrial natriuretic peptide (ANP), an antagonist of angiotensin’s physiological effect, was investigated as a modulator of salt appetite. When angiotensin is involved is producing salt appetite, following sodium depletion by a diuretic combined with a low-salt diet, ANP reduced salt intake by 40%. When salt appetite was raised by DOCA, however, ANP either had no effect or reduced salt ingestion by only 10%. The subfornical organ, the lateral preoptic area, and the central and medial nuclei of the amygdala are being investigated as major components of the limbic circuit underlying salt appetite produced by the actions of angiotensin, aldosterone and ANP in the brain.