PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 4 |

Tytuł artykułu

Assessing the effects of grass carp excretion and herbivory of submerged macrophytes on water quality and zooplankton communities

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Grass carp (Ctenopharyngodon idella) play an important role in the ecological restoration of water bodies, and it is crucial to understand the mechanism behind this. An experiment was performed in tanks consisting of three treatments: 1) without fish (control treatment, CON), 2) with fish unable to feed on submerged macrophytes (excretion treatment, EXCR), and 3) with fish swimming free (herbivory plus excretion treatment, HERB-EXCR). Treatments were conducted with varying macrophytic compositions (Vallisneria natans (Lour.) Hara, Ceratophyllum demersum L., and both species) and carp densities (low, medium, and high: 0.15, 0.30, and 0.45 g·L⁻¹ respectively, in EXCR and HERB-EXCR). Results indicated that in EXCR and HERB-EXCR, water quality was better with a lower density of grass carp. In EXCR, the water quality in tanks with V. natans was worse than in other tanks, and water quality in C. demersum tanks was better under the HERB-EXCR treament. Compared to EXCR, grass carp in HERB-EXCR significantly increased concentrations of NH₄⁺-N, NO₂⁻-N, and chlorophyll a. The effects on biomasses of protozoa, copepods, and total zooplankton in HERB-EXCR were greater than in the other treatments. Integrated analysis showed that grass carp herbivory on submerged macrophytes could be the central mechanism accounting for the changes in water quality and zooplankton communities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.1681-1691,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
  • University of Chinese Academy of Sciences, Beijing 100049, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
autor
  • State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Bibliografia

  • 1. SØNDERGAARD M., JOHANSSON L.S., LAURIDSEN T.L., JØRGENSE T.B., LIBORIUSSEN L., JEPPESEN E. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biol. 55 (4), 893, 2010.
  • 2. BLINDOW I., HARGEBY A., MEYERCORDT J., SCHUBERT H. Primary production in two shallow lakes with contrasting plant form dominance: a paradox of enrichment? Limnol. Oceanogr. 51 (6), 2711, 2006.
  • 3. DOMINGUES F.D., STARLING F.L.R.M., NOVA C.C., LOUREIRO B.R., SOUZA L.C., BRANCO C.W.C. The control of floating macrophytes by grass carp in net cages: experiments in two tropical hydroelectric reservoirs. Aquac. Res. 1, 2016.
  • 4. MITCHELL A.J., KELLY A.M. The public sector role in the establishment of grass carp in the United States. Fisheries. 31 (3), 113, 2006.
  • 5. WELLS R.D.S., BANNON H.J., HICKS B.J. Control of macrophytes by grass carp (Ctenopharyngodon idella) in a Waikato drain, New Zealand. New Zeal. J. Mar. Fresh. 37, 85, 2003.
  • 6. ZAJICEK P.W., WEIER T., HARDIN S., CASSANI J.R., MUDRAK V. A triploid grass carp risk analysis specific to Florida. J. Aquat. Plant Manage. 47, 15, 2009.
  • 7. RICHARDSON R.J. Aquatic plant management and the impact of emerging herbicide resistance issues. Weed technology. 22, 11, 2008.
  • 8. WOOD K.A., O›HARE M.T., MCDONALD C., SEARLE K.R., DAUNT F., STILLMAN R.A. Herbivore regulation of plant abundance in aquatic ecosystems. Biol. Rev. 1, 2016.
  • 9. GARNER A.B., KWAK T.J., MANUEL K.L., BARWICK D.H. High-density grass carp stocking effects on a reservoir invasive plant and water quality. J. Aquat. Plant Manage. 51, 27, 2013.
  • 10. HOFSTRA D.E., CLAYTON J.S. Assessment of the efficacy of contained grass carp at removing the aquatic weed hornwort; Ministry Primary Industries: New Zealand, pp. 1-20, 2012.
  • 11. STEPHEN D., BALAYLA D.M., BÉCARES E., COLLINGS S.E., FERNÁNDEZ-ALÁEZ C., FERNÁNDEZ-ALÁEZ M., FERRIOL C., GARCÍA P., GOMÁ J., GYLLST ÖM M., HANSSON L.A., HIETALA J., KAIRESALO T., MIRACLE M. R., ROMO S., RUEDA J., STÅHL-DELBANCO A., SVENSSON M., VAKKILAINEN K., VALENTÍN M., VAN DE BUND W. J., VAN DONK E., VICENTE E., VILLENA M. J., MOSS B. Continental-scale patterns of nutrient and fish effects on shallow lakes: introduction to a pan-European mesocosm experiment. Freshwater Biol. 49, 1517, 2004.
  • 12. HIETALA J., VAKKILAINEN K., KAIRESALO T. Community resistance and change to nutrient enrichment and fish manipulation in a vegetated lake littoral. Freshwater Biol. 49, 1525, 2004.
  • 13. VAN DE BUND W.J., VAN DONK E. Effects of fish and nutrient additions on food-web stability in a charophyte-dominated lake. Freshwater Biol. 49, 1565, 2004.
  • 14. MENEZES R.F., ATTAYDE J.L., VASCONCELOS F.R. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshwater Biol. 55, 767, 2010.
  • 15. HAVENS K.E., ELIA A.C., TATICCHI M.I., FULTON R.S. Zooplankton- phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia. 628, 165, 2009.
  • 16. KRUPSKA J., PELECHATY M., PUKACZ A., OSSOWSK P. Effects of grass carp introduction on macrophyte communities in a shallow lake. Oceanol. Hydrobiol. St. 41 (1), 35, 2012.
  • 17. STATE EPA OF CHINA (ED.). Monitoring and determination methods for water and wastewater, 4th ed. China Environmental Science Press, Beijing, 2002 [In Chinese].
  • 18. Shin-ichiro S.M., Usio N., Takamura N., Washitani I. Contrasting impacts of invasive engineers on freshwater ecosystems: an experiment and meta-analysis. Oecologia. 158,676, 2009.
  • 19. HANSSON L.A., GYLLSTRÖM M., STAHL-DELBANCO A., SVENSSON M. Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biol. 49, 1540, 2004.
  • 20. JAKOBSEN T.S., HANSEN P.B., JEPPESEN E., GRØNKJAER P., SØNDERGAARD M. Impact of three-spined stickleback Gasterosteus aculeatus on zooplankton and chl a in shallow, eutrophic, brackish lakes. Mar. Ecol-Prog. Ser. 262, 279, 2003.
  • 21. GLAHOLT S.P, VANNI M.J. Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshwater Biol. 50, 1869, 2005.
  • 22. ATTAYDE J.L., HANSSON L.A. The relative importence of fish predation and excretion effects on planktonic communities. Limnol. Oceanogr. 46 (5), 1003, 2001.
  • 23. GÎLCÃ V. Research concerning the feed digestibility and the digestive utilization coefficient in grass carp (Ctenopharingodon idella). AACL. Bioflux. 3 (5), 378, 2010.
  • 24. PÍPALOÁ I. A review of grass carp use for aquatic weed control and its impact on water bodies. J. Aquat. Plant Manage. 44, 7, 2006.
  • 25. WANG C., ZHENG S.S., WANG P.F., QIAN J. Effects of vegetations on the removal of contaminants in aquatic environments: A review. J. Hydrodyn. 26 (4), 498, 2014.
  • 26. GAO J.Q., XIONG Z.T., ZHANG J.D., ZHANG W.H., MBA F.O. Phosphorus removal from water of eutrophic Lake Donghu by five submerged macrophytes. Desalination. 242, 193, 2009.
  • 27. SRIVASTAVA J., GUPTA A., CHANDRA H. Managing water quality with aquatic macrophytes. Rev. Environ. Sci. Biotechnol. 7, 261, 2008.
  • 28. TRACY M., MONTANTA J.M., ALLENSON T.E., HOUGH R.A. Long-term responses of aquatic macrophyte diversity and community structure to variation in nitrogen loading. Aquat. Bot. 77, 43, 2003.
  • 29. SUN J., HE F., ZHANG Y., LIU B.Y., ZHOU Q.H., WU Z.B. The feeding behavior of grass carp (Ctenopharyngodon idellus) on different types of submerged plants. Acta Hydrobiologica Sinica. 5 (39), 997, 2015 [In Chinese].
  • 30. DAI Y.R., JIA C.R., LIANG W., HU S.H., WU Z.B. Effects of the submerged macrophyte Ceratophyllum demersum L. on restoration of a eutrophic waterbody and its optimal coverage. Ecol. Eng. 40, 113, 2012.
  • 31. PAN G., YANG B., WANG D., CHEN H., TIAN B.H., ZHANG M.H., YUAN X.Z., CHEN J. In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol. Eng. 37, 302, 2011.
  • 32. HUSSNER A., STIERS I., VERHOFSTAD M.J.J.M., BAKKER E.S., GRUTTERS B.M.C., HAURY J., VAN VALKENBURG J.L.C.H., BRUNDU G., NEWMAN J., CLAYTON J.S., ANDERSON L.W.J., HOFSTRA D. Management and control methods of invasive alien freshwater aquatic plants: A review. Aquat. Bot. 136, 113, 2017.
  • 33. WEYL P.S.R., MARTIN G.D. Have grass carp driven declines in macrophyte occurrence and diversity in the Vaal River, South Africa? Afr. J. Aquat. Sci. 41 (2), 241, 2016.
  • 34. GETTE-BOUVAROT M., MERMILLOD-BLONDIN F., LEMOINE D., DELOLME C., DANJEAN M., ETIENNE L., VOLATIER L. The potential control of benthic biofilm growth by macrophytes-A mesocosm approach. Ecol. Eng. 75, 178, 2015.
  • 35. ZHANG S. H., GUO L., CAO J.Y., CHANG J.J. Allelopathic activities of three emergent macrophytes on several monospecific cyanobacterial species and natural phytoplankton assemblages. Pol. J. Environ. Stud. 24 (1), 397, 2015.
  • 36. WANG H.Q., LIANG F., ZHANG L.Y. Composition and anti-cyanobacterial activity of essential oils from six different submerged macrophytes. Pol. J. Environ. Stud. 24 (1), 333, 2015.
  • 37. VRANOVSKY M. Zooplankton of a Danube side arm under regulated ichthyocoenosis conditions. International Vereinigung fuer Theoretische und Angewandte Limnoligie. 24, 2507, 1991.
  • 38. ZHANG S.Y., ZHOU Q.H., XU D., HE F, CHENG S.P., LIANG W., DU C., WU Z.B. Vertical-flow constructed wetlands applied in a recirculating aquaculture system for channel catfish culture: effects on water quality and zooplankton. Pol. J. Environ. Stud. 19 (5), 1069, 2010.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ad27dbf3-0a4c-45ae-a427-9b7a6584fe24
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.