Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 12 |

Tytuł artykułu

The circadian rhythms of photosynthesis, ATP content and cell division in Microcystis aeruginosa PCC7820


Warianty tytułu

Języki publikacji



Microcystis aeruginosa is one of the most common blue-green algae species that forms harmful water bloom, which frequently causes serious ecological pollution and poses a health hazard to animals and humans. To understand the progression of algal blooms and to provide a theoretical basis for predicting and preventing the occurrence of algal blooms and reducing the harm of algal bloom to environment, we investigated the diurnal variation of photosynthesis, ATP content and cell division in M. aeruginosa PCC7820. The results showed that the photosynthesis and ATP content of M. aeruginosa PCC7820 exhibited clear circadian rhythm with a period of approximately 24 h and that the periodic rhythms continued for at least three cycles under continuous light conditions. Furthermore, the period length showed that a temperature compensation effect and changes in light cycle or temperature could reset the phase of circadian rhythm. These results indicate that the circadian rhythms of physiological process in M. aeruginosa PCC7820 are controlled by the endogenous circadian clock. Examinations of the number, size and cytokinin content of cells also reveal that the cell division of M. aeruginosa PCC7820 with the generation time of 38.4 h exhibits robust circadian rhythms with a period close to 24 h. The circadian rhythms of cell division may be generated by a biological clock through regulation of the cell division phase of M. aeruginosa PCC7820 via a gating mechanism. The phases in which cell division slows or stop recur with a circadian periodicity of about 24 h.

Słowa kluczowe








Opis fizyczny



  • State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
  • State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China
  • State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, People’s Republic of China


  • Agrawal GK, Asayama M, Shirai M (1999) Light-dependent and rhythmic psbA transcripts in homologous/heterologous cyanobacterial cells. Biochem Biophys Res Commun 255:47–53. doi:10.1006/bbrc.1998.9996
  • Asato Y (2003) Toward an understanding of cell growth and the cell division cycle of unicellular photoautotrophic cyanobacteria. Cell Mol Life Sci CMLS 60:663–687
  • Bolige A, Hagiwara SY, Zhang Y, Goto K (2005) Circadian G2 arrest as related to circadian gating of cell population growth in Euglena. Plant Cell Physiol 46:931–936. doi:10.1093/pcp/pci100
  • Canaple L, Kakizawa T, Laudet V (2003) The days and nights of cancer cells. Cancer Res 63:7545–7552
  • Codd GA, Lindsay J, Young FM, Morrison LF, Metcalf JF (2005) From mass mortalities to management measures. Harmful cyanobacteria. aquatic ecology. Springer, The Netherlands
  • Cordeiro-Araujo MK, Bittencourt-Oliveira MDC (2013) Active release of microcystins controlled by an endogenous rhythm in the cyanobacterium Microcystis aeruginosa. Phycol Res 61:1–6
  • Ditty JL, Williams SB, Golden SS (2003) A cyanobacterial circadian timing mechanism. Annu Rev Genet 37:513–543. doi:10.1146/annurev.genet.37.110801.142716
  • Dong G et al (2010) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 140:529–539. doi:10.1016/j.cell.2009.12.042
  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290
  • Frebort I, Kowalska M, Hluska T, Frebortova J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452. doi:10.1093/jxb/err004
  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a cadian clock? The case of chlamydmonous reinhardtii. J Cell Biol 129:1061–1069
  • Goulard F, Luning K, Jacobsen S (2004) Circadian rhythm of photosynthesis and concurrent oscillations of transcript abundance of photosynthetic genes in the marine red alga grateloupia turuturu. Eur J Phycol 39:431–437
  • Hussain A, Krischek M, Roitsch T, Hasnain S (2010) Rapid determination of cytokinins and auxin in cyanobacteria. Curr Microbiol 61:361–369
  • Imashimize M, Bernat G, Sunamura E, Broekmans M, Konno H, Isato K (2011) Regulation of F0F1-ATPase from Synechocystis sp.PCC6803 by γ and ε subunits is significant for light/dark adaptation. J Biol Chem 286:26595–26602
  • Johnson CH (2010) Circadian clocks and cell division: what’s the pacemaker? Cell Cycle 9:3864–3873
  • Johnson CH, Golden SS (1999) Circadian programs in cyanobacteria: adaptiveness and mechanism. Annu Rev Microbiol 53:389–409. doi:10.1146/annurev.micro.53.1.389
  • Johnson CH, Golden SS, Kondo T (1998) Adaptive significance of circadian programs in cyanobacteria. Trends Microbiol 6:407–410
  • Johnson CH, Mori T, Xu Y (2008) A cyanobacterial circadian clockwork. Current Biol CB 18:R816–R825. doi:10.1016/j.cub.2008.07.012
  • Kondo T, Mori T, Lebedeva NV, Aoki S, Ishiura M, Golden SS (1997) Circadian rhythms in rapidly dividing cyanobacteria. Science 275:224–227
  • Kricka LJ, Thorp GHG (1983) Chemiluminescent and bioluminescent methods in analytical chemistry. Analyst 108:1274–1296
  • Kucho K, Tsuchiya Y, Okumoto Y, Harada M, Yamada M, Ishiura M (2004) Construction of unmodified oligonucleotide-based microarrays in the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: screening of the candidates for circadianly expressed genes. Genes Genet Syst 79:319–329
  • Kucho K, Okamoto K, Tsuchiya Y, Nomura S, Nango M, Kanehisa M, Ishiura M (2005) Global analysis of circadian expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187:2190–2199. doi:10.1128/JB.187.6.2190-2199.2005
  • Liu Y, Tsinoremas NF, Johnson CH, Lebedeva NV, Golden SS, Ishiura M, Kondo T (1995) Circadian orchestration of gene expression in cyanobacteria. Genes Dev 9:1469–1478
  • Mackey SR, Choi J, Kitayama Y, Iwasaki H, Dong G, Golden SS (2008) Protein found in a CikA interaction assay link the circadian clock, metabolism, and cell division in Synechococcus elongatus. J Bacteriol 190:3738–3746
  • Markson JS, Piechura JR, Puszynska AM, O’Shea EK (2013) Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155:1396–1408
  • Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430:81–85. doi:10.1038/nature02533
  • Mori T, Johnson CH (2001) Independence of circadian timing from cell division in cyanobacteria. J Bacteriol 183:2439–2444. doi:10.1128/JB.183.8.2439-2444.2001
  • Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci USA 93:10183–10188
  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664
  • Paul JH, Kang JB, Ikeda T (2000) Diel patterns of regulation of rbcL transcription in a cyanobacterium and a Prymnesophyte. Mar Biotechnol 2:426–436
  • Piechulla B (1999) Circadian expression of the light-harvesting complex protein genes in plants. Chronob Int 16:115–128
  • Qian H, Hu B, Yu S, Pan X, Wu T, Fu Z (2012) The effects of hydrogen peroxide on the circadian rhythms of Microcystis aeruginosa. PloS One 7:e33347. doi:10.1371/journal.pone.0033347
  • Sotta B, Pilate G, Pelese F, Sabbagh I, Bonnet M, Maldiney R (1987) An avidin-biotin solid phase ELISA for Femtomole Isopentenyladenine and Isopentenyladenosine measurements in HPLC purified plant extracts. Plant Physiol 84:571–573
  • Straub C, Quillardet P, Vergalli J, de Marsac NT, Humbert JF (2011) A day in the life of microcystis aeruginosa strain PCC 7806 as revealed by a transcriptomic analysis. PLoS One 6:e16208. doi:10.1371/journal.pone.0016208
  • Von Schwartzenberg K, Lutze K, Hahn H (1988) Determination of cytokinins in needles of spruce (picea abies [L.] Karst.) by indirect enzyme-linked immunosorbent assay. J Plant Physiol 133:529–534

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.