Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 4 |
Tytuł artykułu

Effects of experimental warming and CO2 concentration doubling on 13C CPMAS NMR spectra of humin in coniferous forest ecosystems of the eastern Tibetan Plateau in China

Warianty tytułu
Języki publikacji
Despite the perceived importance of humin to forest ecosystem C sequestration, few studies have attempted to examine the responses to elevated temperature (ET, +2.5ºC) and elevated atmospheric CO2 concentration (EC, 700 ppm) on the chemical structures of humin. Solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was applied to evaluate the 6-year effect of ET and EC on the chemical structure of humin under the coniferous forest ecosystems in the eastern Tibetan Plateau of China. Results showed that ET treatment decreased soil organic carbon (SOC), whereas EC and ETC treatment increased SOC. ET treatment decreased aromatic C and carbonyl C of humin while increasing alkyl C, the ratios of alkyl C/O-alkyl C, aliphatic C/aromatic C, and hydrophobic C/hydrophilic C. Compared with ET treatment, the ETC treatment had a similar but reduced impact on the chemical structure of humin, while EC had slightly and undetectable impact on the chemical structure of humin. The 6-year exposure to ET decreased SOC and changed the molecular structure of soil humin to be more alkyline and hydrophobic, and it was a protection mechanism to the sequestration and stability of organic C in soil.
Słowa kluczowe
Opis fizyczny
  • Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Chin
  • College of Earth Sciences, Chengdu University of Technology, Chengdu, China
  • Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
  • 1. Ziegler S.E., Billings S.A., Lane , C.S., Li J.W., Fogel M.L. Warming alters routing of labile and slowerturnover carbon through distinct microbial groups in boreal forest organic soils. Soil Biology Biochemistry. 60, 23, 2013.
  • 2. IPCC. The Physical Science Basis. The fourth assessment report of working group. Cambridge University Press. 2007.
  • 3. Pendall E., Osanai Y., Williams A.L., Hovenden M.J. Soil carbon storage under simulated climate change is mediated by plant functional type. Global Change Biology. 17 (1), 505, 2011.
  • 4. Muñoz -Rojas M., Abd -Elmabod S.K., Zavala L.M., Rosa D.D.L., Jord án A. Climate change impacts on soil organic carbon stocks of mediterranean agricultural areas: a case study in northern egypt. Agriculture Ecosystems Environment. 238, 142. 2016.
  • 5. Wang X., Nakatsubo T., Nakane K.. Impacts of elevated CO2, and temperature on soil respiration in warm temperate evergreen quercus glauca, stands: an open-top chamber experiment. Ecological Research, 27 (3), 595-, 2012.
  • 6. Carrillo Y., Pendall E., Dijkstra F.A., Morgan J.A., Newcomb J.M. Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant Soil. 347 (1), 339, 2011.
  • 7. Kaiser M., Wirth S., Ellerbrock R.H., Sommer M. Microbial respiration activities related to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils. Soil Biology Biochemistry. 42 (3), 418, 2010.
  • 8. Chen H., Zhu Q., Peng C., Wu N., Wang Y., Fang X., Gao Y., Zhu D., Yang G., Tian J. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology. 19 (10), 2940, 2013.
  • 9. Hu Y., Wang Z., Wang Q., Wang S., Zhang , Z., Zhang Z., Zhao Y. Climate change affects soil labile organic carbon fractions in a tibetan alpine meadow. Journal of Soils Sediments, 17 (2), 326, 2017.
  • 10. Spaccini R., Piccolo A. Molecular characteristics of humic acids extracted from compost at increasing maturity stages. Soil Biology Biochemistry. 41 (6), 1164, 2009.
  • 11. Xu G., Jiang H., Zhang Y., Korpelainen H., Li C. Effect of warming on extracted soil carbon pools of Abies faxoniana forest at two elevations. Forest Ecology Management. 310, 357, 2013.
  • 12. Zhou P., Pan G. X., Spaccini R., Piccolo A. Molecular changes in particulate organic matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments. European Journal of Soil Science. 61 (2), 231, 2010.
  • 13. Wang W., Zhou W., Wang H., Ji C., Han S. Organic carbon and nitrogen dynamics in different soil fractions between broad-leaved korean pine forests and aspen-birch forests in northeastern china. Journal of Soils Sediments. 2016, 1, 2016.
  • 14. Barros Soares E.M., Silva I.R., de Novais R.F., Hu Y.-Y., Schmidt -Rohr K. Alterations in molecular composition of humic substances from eucalypt plantation soils assessed by C-NMR spectroscopy. Soil Science Society of America Journal. 77 (1), 293, 2013.
  • 15. Li C.L., Gao S.Q., Zhang J.J., Zhao L.P., Wang L.C. Moisture effect on soil humus characteristics in a laboratory incubation experiment. Soil Water Research. 11 (1), 37, 2016.
  • 16. Mathers N.J., Xu Z. Solid-state 13C NMR spectroscopy: characterization of soil organic matter under two contrasting residue management regimes in a 2-yearold pine plantation of subtropical Australia. Geoderma. 114, 19, 2003.
  • 17. Guo X., Du W., Wang X., Yang Z. Degradation and structure change of humic acids corresponding to water decline in zoige peatland, qinghai-tibet plateau. Science of the Total Environment. 445-446, 231, 2013.
  • 18. Li C., Cao Z., Chang J., Zhang Y., Zhu G., Zong N., He Y., Zhang J., He N. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a tibetan alpine meadow. Catena. 156, 139, 2017.
  • 19. Lucas E.G., Izquierdo C.G., Fernández M.T.H. Changes in humic fraction characteristics and humus-enzyme complexes formation in semiarid degraded soils restored with fresh and composted urban wastes. A 5-year field experiment. Journal of Soils Sediments. 2016, 1, 2016.
  • 20. Keeler C., Kelly E.F., Maciel G.E. Chemicalstructural information from solid-state C-13 NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA. Geoderma. 130, 124, 2006.
  • 21. Piccolo A., Conte P., Spaccini R., Mbagwu J.S.C. Influence of land use on the characteristics of humic substances in some tropical soils of Nigeria. European Journal of Soil Science. 56 (3), 343, 2005.
  • 22. Kholodov V.A., Konstantinov A.I., Perminova I.V. The carbon distribution among the functional groups of humic acids isolated by sequential alkaline extraction from gray forest soil. Eurasian Soil Science. 42 (11), 1229, 2009.
  • 23. Spaccini R., Piccolo A., Haberhauer G., Gerzabek M.H. Transformation of organic matter from maize residues into labile and humic fractions of three European soils as revealed by C-13 distribution and CPMAS-NMR spectra. European Journal of Soil Science. 51 (4), 583, 2000.
  • 24. Pardo M.T., Almendros G., Zancada M.C., López -Fando C., González -Vila F.J. Cultivationinduced effects on the organic matter in degraded southern African soils. Communications in Soil Science and Plant Analysis. 43 (3), 541, 2012.
  • 25. Franco I.A.D. Proposition for organo-mineral complex extraction methodology. Communications in Soil Science and Plant Analysis. 40, 3281, 2009.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.