Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 63 | 4 |
Tytuł artykułu

Sulphate reducing activity detected in soil samples from Antarctica, ecology glacier forefield, King George Island

Treść / Zawartość
Warianty tytułu
Języki publikacji
We determined sulphate-reducing activities in media inoculated with soils and with kettle lake sediments in order to investigate their potential in geomicrobiological processes in low-temperature, terrestrial maritime Antarctic habitats. Soil and sediment samples were collected in a glacier valley abandoned by Ecology Glacier during the last 30 years: from a new formed kettle lake sediment and forefield soil derived from ground moraine. Inoculated with these samples, liquid Postgate C and minimal media supplemented with various carbon sources as electron donors were incubated for 8 weeks at 4°C. High rates of sulphate reduction were observed only in media inoculated with soil. No sulphate reduction was detected in media inoculated with kettle lake sediments. In soil samples culture media calcite and elemental sulphur deposits were observed, demonstrating that sulphate-reducing activity is associated with a potential to mineral formation in cold environments. Cells observed on scanning microscopy (SEM) micrographs of post-culture-soil deposits could be responsible for sulphate-reducing activity.
Słowa kluczowe
Opis fizyczny
  • Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Poland
  • Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Poland
  • Laboratory of Basic Research in Horticulture, Warsaw University of Life Sciences, Poland
  • Faculty of Geology, Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, Poland
  • Department of Antarctic Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Poland
  • Angiel P.J. and M. Dąbski. 2012. Lichenometric ages of the Little Ice Age moraines on King George Island and of the last volcanic activity on Penguin Island (west Antarctica). Geogr. Ann. A 94: 395–412.
  • Barczuk A. and A. Tatur. 2003. Biogenic phosphate and sulphate minerals in the soils of Antarctic FPeninsula. Polskie Towarzystwo Mineralogiczne – Prace Specjalne 23: 41–44.
  • Baas-Becking L.G.M. 1925. Studies on sulphur bacteria. Ann. Bot- London 39: 613–630.
  • Birkenmajer K. 2001. Mesozoic and Cenozoic stratigraphic units in parts of the South Shetland Island and Northern Antarctic Peninsula. Stud. Geol. Pol. 118: 5–188.
  • Birkenmajer K. 2002. Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica), 1956–2001. B. Pol. Acad. Sci-Earth 50: 5–19.
  • Braissant O., A.W. Decho, C. Dupraz, C. Glunk, K.M. Przekop and P.T. Visscher. 2007. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerales. Geobiology 5: 401–411.
  • Breezee J., N. Cady and J.T. Staley. 2004. Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microbial Ecol. 47: 300–304.
  • Buss H.L., A. Luttge and S.L. Brantley. 2007. Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chem. Geol. 240: 3–4.
  • Edwards P.P., C.N.R. Rao, G.U. Kulkarni and P.J. Thomas. 2007. Size-Dependent Chemistry: Properties of Nanocrystals. Chem. Eur. J. 8: 29.
  • Fauque G., J. Legall and L.L. Barton. 1991. Sulfate-reducing and sulfur reducing bacteria, pp. 271–337. In: Shively J.M.I. and L.L. Barton (eds). Variations in autotrophic life. Academic Press Ltd.
  • Gilichinsky D., T. Vishnivetskaya, M. Petrova, E. Spirina, V. Mamykin and E. Rivkina. 2008. Bacteria in Permafrost, pp. 83–102. In: Margesin R., F. Schinner, J.C. Marx and C. Gerday (eds). Psychrophiles from Biodiversity to Biotechnology. Springer Berlin Heidelberg.
  • Grzesiak J., M. Żmuda-Baranowska, P. Borsuk and M. Zdanowski. 2009. Microbial community at the front of Ecology Glacier (King George Island, Antarctica): Initial observations. Pol. Polar Res. 30(1): 37–47.
  • Hao O.J., J. M. Chen, L. Huang and R.L. Buglass. 1996. Sulfate-reducing bacteria. Crit. Rev. Env. Sci. Tec. 26: 155–187.
  • Hart V.S., C.E. Johnson and R.D. Letterman. 1992. An analysis of low-level turbidity measurements. J. Am. Water Works Assoc. 84(12): 40.
  • Hodson A., Anesio A. M., Tranter M., Fountain A.,Osborn M., Priscu J., Laybourn-Parry J. and B. Sattler. 2008. Glacial Ecosystems. Ecol. Monogr. 78: 41–67.
  • Isaksen M.F. and Teske A. 1996. Desulforhopalusvacuolatus gen. nov., sp. nov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch. Microbiol. 166(3): 160–168.
  • Karnachuk O.V., S.Y. Kurochkina and O.H. Tuovinen. 2002. Growth of sulfate-reducing bacteria with solid-phase electron acceptors. Appl. Microbiol. Biot. 58: 482–486.
  • Labrenz M., G.K. Druschel, T. Thomsen-Ebert, B. Gilbert, S.A. Welch, K.M. Kemmer, G.A. Logan, R.E. Summons, G. De Stasio, P.L. Bond et al. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744–1747.
  • Lee Y.I., H. Soo Lim and H. Yoon. 2004. Geochemistry of soils of King George Island, West Antarctica. Geochim. Cosmochim. Ac. 68: 4319–4333.
  • Lei X.R., J.H. Yang and X. Lin. 2009. Crystal structure determination of Jatrorrhinzine chloride – Chin. Sci. Bull. 54: 3244–3248.
  • Margesin R., F. Schinner, J.C. Marx and C. Gerday. 2008. Psychrophiles – From Biodiversity to Biotechnology. Springer-Verlag, Berlin.
  • Maurice P.A, D.M. Mcknight, L. Leff, J.E. Fulghum and M. Goosef. 2002. Direct observations of aluminosilicate weathering in the hyporheic zone of an Antarctic Dry Valley Stream. Geochim. Cosmochim. Ac. 66: 1335–1347.
  • Mikucki J. A. and J. C. Priscu. 2007. Bacterial Diversity Associated with Blood Falls, a Subglacial Outflow from the Taylor Glacier, Antarctica. Appl. Environ. Microb. 73: 4029–4039.
  • Morita R.Y. 1975. Psychrophilic Bacteria. Bacteriology Rev. 39: 144–167.
  • Nawrocki J., M. Pańczyk and I.S. Williams. 2011. Isotopic ages of selected magmatic rocks from King George Island (West Antarctica) controlled by magnetostratigraphy. Geol. Quart. 55 (4): 301–322.
  • Peckmann J., V. Thiel, W. Michaelis, P. Clari, C. Gaillard, L. Martire and J. Reitner. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced, authigenic carbonates. Int. J. Earth Sci. 88: 60–75.
  • Perry C.T. and K.G. Taylor. 2006. Inhibition of dissolution within shallow water carbonate sediments: impacts of terrigenous sediment input on syn-depositional carbonate diagenesis. Sedimentology 53: 495–513.
  • Postgate J.R. 1984. The sulphate reducing bacteria. Cambridge University Press.
  • Pudełko R. 2003. Topographic map of the SSSI No. 8, King George Island, West Antarctica. Pol. Polar Res. 24(1): 53–60.
  • Pudełko R. 2008. Two new topographic maps for sites of scientific intereston King George Island, West Antarctica. Pol. Polar Res. 29 (3): 291–297.
  • Ristow N.E., S.W. Sötemann, M.C. Wentzel, R.E. Loewenthal and G.A. Ekama. 2005. Sulphate measurement in organic-rich solutions: Carbonate fusion pretreatment to remove organic interferences. Water SA 31: 267–270.
  • Simoes J.C., H. Goßmann, R.J. Delmas and M.Y. Moskalewsky. 2004. Glaciological research in King George Island: missions and developments in the 1990s. Pesqui. Antárt. Bras. 4: 1–8.
  • Skidmore M., S.P. Anderson, M. Sharp, J. Foght and B.D. Lanoil. 2005. Comparison of microbial community composition of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microb. 71: 6986–6997
  • Steven B., R. Leveille, W.H. Pollard and L.G. Whyte. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles 10: 259–267.
  • Trüper H.G. 1984. Microorganisms and the sulfur cycle, pp. 351– 365. In: Muller A. and B. Krebs (eds) Sulfur, its significance for chemistry, for geo-, bio-, and cosmosphere, and technology. Studies in Inorganic Chemistry. Elsevier Science Publishers B.V., Amsterdam.
  • Ugolini F.C. and J.G. Bockheim. 2008. Antarctic soils and soil formation in a changing environment: A review. Geoderma 144 (1–2): 1–8.
  • Warthman R., Y. van Lith, C. Vasconcelos, J.A. Mckenzie and A.M. Karpoff. 2000. Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28: 1091–1094.
  • Wolicka D. and W. Kowalski. 2006. Biotransformation of phosphogypsum in petroleum-refining wastewaters. Pol. J. Environ. Stud. 15: 355–360.
  • Wright D.T. and D. Wacey. 2004. Sedimentary dolomite: a reality check. Geological Society, Special Publications 235: 65–74.
  • Yeo J.P., J.I. Lee, S.D. Hur and B.G. Choi. 2004. Geochemistry of volcanic rocks in Barton and Weaver peninsulas, King George Island, Antarctica: implications for arc maturity and correlation with fossilized volcanic centers. Geosciences Journal 8: 11–25.
  • Zdanowski M.K., M.J. Żmuda-Baranowska, P. Borsuk, A. Świątecki, D. Górniak, D. Wolicka, K.M. Jankowska and J. Grzesiak. 2013. Culturable bacteria community development in postglacial soils of Ecology Glacier, King George Island, Antarctica. Polar Biol. 36: 511–527.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.