PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 10 |

Tytuł artykułu

An attempt at modelling the periphyton dynamics with artificial neural networks exemplified by the oxbow lake reopening study (The Slupia River, Northern Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
An experiment was performed in the Osokowy Staw oxbow lake (the Słupia River, northern Poland). The old riverbed was reconnected with the riverine system and periphyton communities on nylon artificial substrate were surveyed before and after engineering works. Then, ANN (Artificial Neural Network) architectures were designed and trained in order to create models of interactions between 18 macrozooperiphyton, microzooperiphyton and phytoperiphyton taxa in the changing ecosystem. Calculations were performed using StatSoft Software Statistica 6.1 with the implemented neural network module.Neural network models allowed a quantitative insight into periphyton dynamics and indicated trophic relationships, both predatoryprey and competitive. Thus, we see ANN as a good technique for modelling multidimensional, nonlinear relations between epiphytic organisms and as a promising method for creating overall models.

Wydawca

-

Rocznik

Tom

10

Opis fizyczny

p.31-40,fig.,ref.

Twórcy

autor
  • Department of Land Reclamation and Environmental Menagement, University of Warmia and Mazury, Plac Lodzki 2, 10-756 Olsztyn, Poland

Bibliografia

  • Allan D. J., 1998, Ekologia wód płynących [Ecology of lotic waters], PWN, Warszawa.
  • Asaeda T. & Son T. H., 2000, Spatial structure and populations of a periphyton community: a model and verification, Ecol. Model. 133: 195-207.
  • Asaeda T. & Son D. H., 2001, A model of the development of a periphyton community resource and flow dynamics, Ecol. Model. 137: 61 - 75.
  • Bartell S. M., Lefebvre G., Kaminski G., Carreau M. & Campbell K. R., 1999, An ecosystem model for assessing ecological risks in Québec rivers, lakes, and reservoirs, Ecol. Model. 24: 43 - 67.
  • Buzzelli C. P., Childers D. L., Dong Q. & Jones R. D., 2000, Simulation of periphyton phosphorus dynamics in Everglades National Park, Ecol. Model. 134: 103 - 115.
  • Carling A., 1992, Introducing Neural Networks, Sigma Press, Wilmslow, UK.
  • DeAngelis D. L., Loreau M., Neergaard D. & Mulholland P., 1995, Modelling nutrient-periphyton dynamics in streams: the importance of transient storage zones, Ecol. Model. 80: 149 - 160.
  • Dedecker A. P., Goethals P. L. M., Gabriels W. & De Pauw N., 2004, Optimization of artificial neural network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium), Ecol. Model. 174: 161 - 173.
  • Dent C. L. & Henry J. C., 1999, Modelling nutrient-periphyton dynamics in streams with surface-subsurface exchange, Ecol. Model. 122: 97 - 116.
  • Dong Q., McCormick P. V., Sklar F. H. & DeAngelis D. L., 2002, Structural instability, multiple stable states and hysteresis in periphyton driven by phosphorus enrichment in the Everglades, Theoret. Pop. Biol. 61: 1 - 13.
  • Eadie J. M., Hobson P. N. & Mann S. O., 2004, A relationship between some bacteria, protozoa and diet in early weaned calves, Nature 183: 624 - 625.
  • Fausett L., 1994, Fundamentals of Neural Networks, Prentice Hall, New York.
  • Havens K. E., East T. L., Rodusky A. J. & Sharfstein B., 1999, Littoral periphyton responses to nitrogen and phosphorus: an experimental study in a subtropical lake, Aquat. Bot. 63: 267 - 290.
  • Hutchinson G. E., 1967, A Treatise on Limnology. Vol. 2, Introduction to Lake Biology and the Limnoplankton, John Wilez & Sons, New York.
  • Jorgensen S. E., Verdonschot P. & Lek S., 2002, Explanation of the observed structure of functional feeding groups of aquatic macro-invertebrates by an ecological model at the maximum energy principle, Ecol. Model. 158: 223 - 231.
  • Lek S. & Guegan J. F., 1999, Artificial neural networks as a tool in ecological modelling, an introduction, Ecol. Model. 120: 65 - 73.
  • Lula P., 2000, Wybrane możliwości zastosowań sieci neuronowych programu STATISTICA Neural Networks [Selected applications of artificial neural networks in STATISTICA Neural Networks software], StatSoft Polska, Kraków.
  • Matz C. & Kjelleberg S., 2005, Off the hook - how bacteria survive protozoan grazing, Trends Microbiol., 13: 302 - 307.
  • Obolewski K., 2002, Organizmy poroślowe (perifiton) zasiedlające trzcinę Phragmites australis i pałkę Typha latifolia oraz sztuczne podłoże w pomorskim jeziorze Lubowidzkim - badania wstępne [Epiphytic organisms (periphyton) inhabiting reed Phragmites australis, broadleaf cattail Typha latifolia and artificial substrate in the Pomeranian Lubowidzkie Lake- preliminary study], Słupskie Prace Przyrodn., Limnologia 1: 71 - 82.
  • Obolewski K., 2003, Reakcje perifitonu na udrożnienie starorzecza rzeki Słupi [Reaction of periphyton on reopening of the oxbow lake on the Słupia River], PhD Dis. PAP, Słupsk: 202.
  • Obolewski K., 2004, Chemical changes in the water column of Osokowy Staw oxbow lake of the Słupia River as a result of its opening, [in:] Z. Galbács (ed.), Analytical and Environmental Problems, Szeged: 111 - 115.
  • Osowski S., 1996, Sieci neuronowe w ujęciu algorytmicznym [Artificial neural networks in algorithmic depiction], WNT, Warszawa.
  • Patrick R., 1961, A study of the numbers and kinds of species found in rivers in eastern United States, Proc. Acad. Nat. Sci., Philadelphia 113: 215 - 258.
  • Pieczyńska E., 1970, Peryfiton jako pokarm zwierząt wodnych (metody badań) [Periphyton as food for aquatic animals (methods of investigation)], Wiadom. Ekol. 16: 133 - 144.
  • Piesik Z., 1992, Biologia i ekologiczna rola organizmów poroślowych (perifiton) zasiedlających sztuczne podłoża w różnych typach wód [Biology and ecological role of epiphytic organisms (periphyton) inhabiting artificial substrate in various types of waters], US, Rozp. Stud., Słupsk: 122 - 263.
  • Piesik Z. & Obolewski K., 2004, Fouling fauna (zooperiphyton) inhabiting reed Phragmites australis (CAV.) Trin. ex STEUD. in Lake Wicko Przymorskie, Balt. Coast. Zone 8: 81 - 94.
  • Szlauer L. & Szlauer B., 1999, Periphyton community on polyethylene sheets after a few years of exposure in a lake, Pol. Arch. Hydrobiol. 46 (3 - 4): 339 - 334.
  • Szlauer L., Szlauer B. & Szlauer-Łukaszewska A., 2001, Niekonwencjonalne metody oczyszczania wód [Unconventional methods of water purification], Nauka - Gospodarka A. R., Szczecin: 23.
  • Tadeusiewicz R., 1993, Sieci neuronowe [Artificial neural networks], Akademicka Oficyna Wydawnicza, Warszawa.
  • Tadeusiewicz R., 2001, Wprowadzenie do sieci neuronowych [Introduction to artificial neural networks], Statsoft Polska, Kraków.
  • Tadeusiewicz R., 2004, Wprowadzenie do praktyki stosowania sieci neuronowych [Introduction to practical application of artificial neural networks], URL: http://www.statsoft.pl
  • Yang M. D. & Sykes R. M., 1998, Trophic-dynamic modelling in a shallow eutrophic river ecosystem, Ecol. Model. 105: 129 - 139.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ac1f57fb-5975-4d6e-9f67-2e5d0d0b78d8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.