PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 83 | 3 |
Tytuł artykułu

De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentiation

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Phalaenopsis is one of the world’s most popular and important epiphytic monopodial orchids. The extraordinary floral diversity of Phalaenopsis is a reflection of its evolutionary success. As a consequence of this diversity, and of the complexity of flower color development in Phalaenopsis, this species is a valuable research material for developmental biology studies. Nevertheless, research on the molecular mechanisms underlying flower color and floral organ formation in Phalaenopsis is still in the early phases. In this study, we generated large amounts of data from Phalaenopsis flowers by combining Illumina sequencing with differentially expressed gene (DEG) analysis. We obtained 37 723 and 34 020 unigenes from petals and labella, respectively. A total of 2736 DEGs were identified, and the functions of many DEGs were annotated by BLAST-searching against several public databases. We mapped 837 up-regulated DEGs (432 from petals and 405 from labella) to 102 Kyoto Encyclopedia of Genes and Genomes pathways. Almost all pathways were represented in both petals (102 pathways) and labella (99 pathways). DEGs involved in energy metabolism were significantly differentially distributed between labella and petals, and various DEGs related to flower color and floral differentiation were found in the two organs. Interestingly, we also identified genes encoding several key enzymes involved in carotenoid synthesis. These genes were differentially expressed between petals and labella, suggesting that carotenoids may influence Phalaenopsis flower color. We thus conclude that a combination of anthocyanins and/or carotenoids determine flower color formation in Phalaenopsis. These results broaden our understanding of the mechanisms controlling flower color and floral organ differentiation in Phalaenopsis and other orchids.
Wydawca
-
Rocznik
Tom
83
Numer
3
Opis fizyczny
p.191-199,fig.,ref.
Twórcy
autor
  • College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, P.R.China
autor
  • College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, P.R.China
  • Dongxin Department, Jiansu Provincial Agricultural Reclamation and Development Corporation, 26 Dongfang Middle Road, Lianyungang, Jiangsu Province, 222248, P.R.China
autor
  • Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 112 Ninghang Road, Jurong, Jiangsu, 212400, P.R.China
autor
  • Zhenjiang Institute of Agricultural Sciences in Hilly Area of Jiangsu Province, 112 Ninghang Road, Jurong, Jiangsu, 212400, P.R.China
autor
  • College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu Province, 210095, P.R.China
Bibliografia
  • 1. Teixeira da Silva JA, Chin DP, Van PT, Mii M. Transgenic orchids. Sci Hortic. 2011;130(4):673–680. http://dx.doi.org/10.1016/j.scienta.2011.08.025
  • 2. Mondragón-Palomino M, Theißen G. MADS about the evolution of orchid flowers. Trends Plant Sci. 2008;13(2):51–59. http://dx.doi.org/10.1016/j.tplants.2007.11.007
  • 3. Mondragon-Palomino M, Theissen G. Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of classB floral homeotic genes. Ann Bot. 2009;104(3):583–594. http://dx.doi.org/10.1093/aob/mcn258
  • 4. Salemme M, Sica M, Gaudio L, Aceto S. Expression pattern of two aralogs of the PI/GLO-like locus during Orchis italica (Orchidaceae, Orchidinae) flower development. Dev Genes Evol. 2011;221(4):241–246. http://dx.doi.org/10.1007/s00427-011-0372-6
  • 5. Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–749.http://dx.doi.org/10.1111/j.1365-313X.2008.03447.x
  • 6. Tanaka Y, Brugliera F, Kalc G, Senior M, Dyson B, Nakamura N, et al. Flower color modification by engineering of the flavonoid biosyntheticpathway: practical perspectives. Biosci Biotechnol Biochem.2010;74(9):1760–1769. http://dx.doi.org/10.1271/bbb.100358
  • 7. Fukuchi-Mizutani M. Biochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian. Plant Physiol. 2003;132(3):1652–1663. http://dx.doi.org/10.1104/pp.102.018242
  • 8. Chen WH, Hsu CY, Cheng HY, Chang H, Chen HH, Ger MJ. Downregulation of putative UDP-glucose: flavonoid 3-O-glucosyltransferasegene alters flower coloring in Phalaenopsis. Plant Cell Rep.2011;30(6):1007–1017. http://dx.doi.org/10.1007/s00299-011-1006-1
  • 9. Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005;10(5):236–242. http://dx.doi.org/10.1016/j.tplants.2005.03.002
  • 10. Harborne JB, Williams CA. Anthocyanins and other flavonoids (January 1998 to December 2000). Nat Prod Rep. 2001;18(3):310–333. http://dx.doi.org/10.1039/b006257j
  • 11. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. NatMethods. 2008;5(7):621–628. http://dx.doi.org/10.1038/nmeth.1226
  • 12. Xu P, Liu Z, Fan X, Gao J, Zhang X, Zhang X, et al. De novo transcriptome sequencing and comparative analysis of differentially expressedgenes in Gossypium aridum under salt stress. Gene. 2013;525(1):26–34.http://dx.doi.org/10.1016/j.gene.2013.04.066
  • 13. Hao QN, Zhou XA, Sha AH, Wang C, Zhou R, Chen SL. Identification f genes associated with nitrogen-use efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics. 2011;12(1):525. http://dx.doi.org/10.1186/1471-2164-12-525
  • 14. Tsai WC, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Chen WH, et al. Molecular biology of orchid flowers. Adv Bot Res. 2008;47:99–145.http://dx.doi.org/10.1016/s0065-2296(08)00003-7
  • 15. Yu H. Identification and characterization of three orchid MADSbox genes of the AP1/AGL9 subfamily during floral transition.Plant Physiol. 2000;123(4):1325–1336. http://dx.doi.org/10.1104/pp.123.4.1325
  • 16. Mondragon-Palomino M, Trontin C. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots. Ann Bot. 2011;107(9):1533–1544. http://dx.doi.org/10.1093/ aob/mcr059
  • 17. Sargent RD. Floral symmetry affects speciation rates in angiosperms. Proc R Soc Lond B Biol Sci. 2004;271(1539):603–608. http://dx.doi.org/10.1098/rspb.2003.2644
  • 18. Baumann K, Perez-Rodriguez M, Bradley D, Venail J, Bailey P, Jin H, et al. Control of cell and petal morphogenesis by R2R3 MYBtranscription factors. Development. 2007;134(9):1691–1701. http://dx.doi.org/10.1242/dev.02836
  • 19. Guilfoyle TJ, Hagen G. Auxin response factors. Curr Opin Plant Biol. 2007;10(5):453–460. http://dx.doi.org/10.1016/j.pbi.2007.08.014
  • 20. Nakashima K, Tran LSP, van Nguyen D, Fujita M, Maruyama K, Todaka D, et al. Functional analysis of a NAC-type transcription factor OsNAC6involved in abiotic and biotic stress-responsive gene expression in rice:rice OsNAC6 functions in stress responses. Plant J. 2007;51(4):617–630. http://dx.doi.org/10.1111/j.1365-313X.2007.03168.x
  • 21. Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, et al. WRKY transcription factors: key components in abscisicacid signalling. Plant Biotechnol J. 2012;10(1):2–11. http://dx.doi.org/10.1111/j.1467-7652.2011.00634.x
  • 22. Rushton PJ, Bokowiec MT, Han S, Zhang H, Brannock JF, Chen X, et al. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol. 2008;147(1):280–295.http://dx.doi.org/10.1104/pp.107.114041
  • 23. Golz JF, Hudson A. Plant development: YABBYs claw to the fore. Curr Biol. 1999;9(22):R861–R863. http://dx.doi.org/10.1016/S0960-9822(00)80047-0
  • 24. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, et al. bZIP transcription factors in Arabidopsis.Trends Plant Sci. 2002;7(3):106–111. http://dx.doi.org/10.1016/S1360-1385(01)02223-3
  • 25. Huang P, Ju HW, Min JH, Zhang X, Chung JS, Cheong HS, et al. Molecular and physiological characterization of the Arabidopsis thaliana oxidation-related zinc finger 2, a plasma membrane proteininvolved in ABA and salt stress response through the ABI2-mediatedsignaling pathway. Plant Cell Physiol. 2012;53(1):193–203. http://dx.doi.org/10.1093/pcp/pcr162
  • 26. van der Krol AR. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression.Plant Cell. 1990;2(4):291–299. http://dx.doi.org/10.1105/tpc.2.4.291
  • 27. Kishimoto S, Sumitomo K, Yagi M, Nakayama M, Ohmiya A. Three routes to orange petal color via carotenoid components in 9 compositaespecies. J Jpn Soc Hortic Sci. 2007;76(3):250–257. http://dx.doi.org/10.2503/jjshs.76.250
  • 28. Matsui S. Varietal differences in flower colors of Cattleya aurantiaca. Res Bull Fac Agric Gifu Univ Jpn. 1992;57:181–185.
  • 29. Tatsuzawa F, Ichihara K, Shinoda K, Miyoshi K. Flower colours and pigments in Disa hybrid (Orchidaceae). South Afr J Bot. 2010;76(1):49–53. http://dx.doi.org/10.1016/j.sajb.2009.06.017
  • 30. Grotewold E. The genetics and biochemistry of floral pigments. Ann Rev Plant Biol. 2006;57(1):761–780. http://dx.doi.org/10.1146/annurev. arplant.57.032905.105248
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-ac0cf690-c4c2-4778-8519-40ae87ef1fdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.