PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | 3 |

Tytuł artykułu

Determination of shear modulus of soil in the RC/TS apparatus for designing offshore wind power plant foundations

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The paper presents a selected aspect of the determining the initial soil shear modulus value on the research example in resonant column – torsional shear apparatus (RC / TS). There are presented the significance of the initial value of shear modulus in design of offshore wind power plant foundations and the importance of its variability in the function of cyclical shear strains of soil related to the impact of sea and atmosphere on the designed structures. Based on the conducted analyses, a new methodology for interpreting the TS test results of soil has been proposed. It allows estimating the values of the shear modulus in the full range of shear strains occurring in issues closely related to the design and construction work of offshore wind power plant foundations

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Numer

3

Opis fizyczny

p.69-83,fig.,ref.

Twórcy

autor
  • , University of Warmia and Mazury in Olsztyn, Heweliusza 4, 10-724 Olsztyn, Poland
autor
  • , University of Warmia and Mazury in Olsztyn, Heweliusza 4, 10-724 Olsztyn, Poland
autor
  • , University of Warmia and Mazury in Olsztyn, Heweliusza 4, 10-724 Olsztyn, Poland

Bibliografia

  • 1. [Arany L., Bhattacharya S., Macdonald J., Hogan S.J. (2017), Design of monopiles for offshore wind turbines in 10 steps, Soil Dynamics and Earthquake Engineering, pp. 126–152.
  • 2. Bałachowski L. (2017). Physical modelling of geotechnical structures in ports and offshore. Polish Maritime Research Special Issue S1, 24(93), pp. 4–9.
  • 3. Benz T. (2007). Small strain stiffness of soils and its numerical consequences (PhD dissertation), Universitat Stuttgart, Germany.
  • 4. Chen X-L., Jin X., Tao X-X. (2008). Comparisons of 5 types of soil dynamic nonlinear constitutive models in seismic response of site. The 14th World Conference on Earthquake Engineering, Beijing, China.
  • 5. Chiang D.Y. (1992). Parsimonious modeling of inelastic structures (PhD thesis), California Institute of Technology, Pasadena, USA.
  • 6. Diaz-Rodriguez J.A., Lopez-Molina J.A. (2008), Strain thresholds in soil dynamics. The 14-th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China.
  • 7. Drnevich V.P., Hall J.R., Richard F.E. (1967), Effects of amplitude of vibration on the shear modulus of sand, in: Proc., Int. Symp. on Wave Propagation and Dynamic Properties of Earth Mat., Albuquerque, N.M., pp. 189–199.
  • 8. Duda M., Mikołajuk H., Okrasa S. (2009). Prognoza bilansu energetycznego Polski do 2030 r. Materiały XXIII Konferencji „Zagadnienia surowców energetycznych i energii w gospodarce krajowej, Zakopane 11-14 X 2009.
  • 9. Jardine R.J. (1992). Some observations on the kinematic nature of soil stiffness, Soils and Foundations, 32(2), pp. 111–124.
  • 10. Jastrzębska M. (2010). The external and internal measurement effect on shear modulus distribution within cyclic small strains in triaxial studies on cohesive soil, Int. Conf. on Experimental Mechanics ICEM14, European Physical Journal, EPJ Web of Conferences 6, 2014.
  • 11. Król M. (2013), Problemy związane z posadowieniem elektrowni wiatrowych, Geoinżynieria drogi mosty tunele, 44(3), pp. 44–46.
  • 12. Li J., Chen S., Jiang L., (2015), Dynamic strength and accumulated plastic strain development laws and models of the remolded red clay under long-term cyclic loads: laboratory test results, Polish Maritime Research, Special Issue S1, 22(86): pp. 89–94.
  • 13. Lombardi D, Bhattacharya S, Muir Wood D. (2013) Dynamic soil–structure interaction of monopile supported wind turbines in cohesive soil, Soil Dynynamic Earthquake Engineering pp. 165–80.
  • 14. Mayne P.W., Coop M.R., Springman S.M., Huang A-B., Zornberg J.G. (2009), Geomaterial behavior and testing.Proc. of 17-th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egipt, 5–9 October 2009, pp. 2777–2872.
  • 15. Nelder J.A., Mead R. (1965). A simplex method for function minimization. Computer Journal, 7(4), pp. 308–313.
  • 16. Nogami Y., Murono Y., Morikawa H. (2012). Nonlinear hysteresis model taking into account S-shaped hysteresis loop and its standard parameters. The 15th World Conference on Earthquake Engineering, Lisboa, Portugalia.
  • 17. Peyrard, Ch. (2016), Offshore wind turbine foundations. Presentation of “Ecole tematique sur les technologies EMRs”, 19-20 October 2016, Ecole Centrale de Nantes, France (https://formationemr16.sciencesconf.org).
  • 18. Srokosz P.E., Dyka I., Bujko M. (2017). Badania sztywności gruntu w kolumnie rezonansowej. monograph, Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego w Olsztynie.
  • 19. Vardanega, P.J., Bolton M.D. (2011), Practical methods to estimate the non-linear shear stiffness of clays and silts. Proc. 5th Int. Conf. on the Deformation Characteristics of Geo-materials, IOS Press, Amsterdam, Netherlands, pp. 372–379.
  • 20. Yu Lu-Qing, Wang Li-Zhong, Guo Zhen (2015), Long-term dynamic behaviour of monopole supported offshore wind turbines in sand, Theretical and Applied Mechanics Letters, pp. 80-84.
  • 21. Zaremba A. (2013), Modyfikacja podłoża gruntowego w świetle posadowienia turbin wiatrowych (cz. I), Geoinżynieria drogi mosty tunele, 45(4), pp. 42–48.
  • 22. Zhao J., Bao L., Wang G., (2017), Numerical analysis of soil settlement prediction and its application in large-scale marine reclamation artificial island project, Polish Maritime Research, Special Issue S3, 24(95), pp. 4–11.
  • 23. Zhou M., Yuan W., Zhang Y., (2015), Seismic material properties of reinforced concrete and steel casing composite concrete in elevated pile-group foundation, Polish Maritime Research, Special Issue S1, 22(86), pp. 141–148.
  • 24. Guideline for the Certification of Wind Turbines. Edition 2010, Germanischer Lloyd Industrial Services GmbH, Hamburg, Germany.
  • 25. Rozporządzenie Ministra transportu, budownictwa i gospodarki morskiej z dnia 25 kwietnia 2012 r. w sprawie ustalania geotechnicznych warunków posadowienia obiektów budowlanych, Dziennik ustaw Rzeczypospolitej Polskiej.
  • 26. Europe’s onshore and offshore wind energy potential. An assessment of environmental and economic constraints. European Environment Agency, Technical report No 6/2009.
  • 27. Deep Water. The next step for offshore wind energy. A report by European Wind Energy Agency, July 2013 (http://www.ewea.org).
  • 28. Wind in power 2017. Annual combined onshore and offshore wind energy statistics. Wind Europe, February 2018, Brussels, Belgium (https://windeurope.org).
  • 29. Offshore wind in Europe. Key trends and statistics 2017. Wind Europe, February 2018, Brussels, Belgium (https://windeurope.org).
  • 30. DIN 4178:2005-04, Glockentürme (Bell Towers), DIN - Deutsches Institut für Normung e.V.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aba76dea-b5b3-492d-9823-c6a5764c0736
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.