PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 4 |

Tytuł artykułu

Methods to increase the rate of mass transfer during osmotic dehydration of foods

Autorzy

Warianty tytułu

PL
Metody zwiększające szybkość przenoszenia masy podczas odwadniania osmotycznego żywności

Języki publikacji

EN

Abstrakty

EN
Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.
PL
Tradycyjne metody utrwalania żywności takie, jak zamrażanie, liofilizacja, suszenie próżniowe, suszenie konwekcyjne często są uzupełniane przez nowe technologie umożliwiające wytwarzanie produktów o wysokiej jakości. Odwadnianie osmotyczne coraz częściej jest wykorzystywane podczas przetwarzania owoców i warzyw. Metoda pozwala na zachowanie dobrych właściwości organoleptycznych i funkcjonalnych gotowego produktu. Uzyskanie pożądanego stopnia odwodnienia bądź wysycenia substancją osmoaktywną materiału wymaga długiego czasu lub stosowania wysokich temperatur. W ostatnich latach poświęcono wiele uwagi technikom mającym na celu zwiększenie wymiany masy pomiędzy odwadnianym materiałem a roztworem hipertonicznym. W pracy zamieszczono przegląd literatury poświęconej metodom usprawniającym przebieg odwadniania osmotycznego, do których należą zastosowanie: ultradźwięków, wysokiego ciśnienia hydrostatycznego, próżniowego odwadniania osmotycznego i pulsacyjnego pola elektrycznego.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

4

Opis fizyczny

p.341-350,fig.,ref.

Twórcy

autor
  • Institute of Chemical Technology of Food, Lodz University of Technology, 4/10 Stefanowskiego, 90-924 Lodz, Poland

Bibliografia

  • Ade-Omowaye B.I.O., Talens P., Angersbach A., Knorr D., 2003 a. Kinetics of osmotic dehydration of red beli peppers as influenced by pulsed electric field pretreatment. Food Res. Int. 36(5), 475-483.
  • Ade-Omowaye B.I.O., Taiwo K.A., Eshtiaghi N.M., Angersbach A., Knorr D., 2003 b. Comparative evaluation of the effects of pulsed electric field and freezing on celi membrane permeabilisation and mass transfer during dehydration of red beli peppers. Innovat. Food Sci. Emerg. Techn. 4(2), 177-188.
  • Amami E., Vorobiev E., 2005. Effect of pulsed electric field on the osmotic dehydration and mass transfer kinetics of apple tissue. Drying Techn. 23(3), 581-595.
  • Amami E., Fersi A., Vorobiev E., Kechaou N., 2007. Osmotic dehydration of carrot tissue enhanced by pulsed electric field, salt and centrifugal force. J. Food Eng. 83(4), 605-613.
  • Amami E., Khezami L., Vorobiev E., Kechaou N., 2008. Effect of pulsed electric field and osmotic dehydration pretreatment on the convective drying of carrot tissue. Drying Techn. 26, 231-238.
  • BellaryA.N., SowbhagyaH.B., Rastogi N.K., 2011. Osmotic dehydration assisted impregnation of curcuminoids in coconut slices. J. Food Eng. 105(3), 453-459.
  • Bórquez R.M., Canales E.R., Redon J.R, 2010. Osmotic dehydration of raspberries with vacuum pretreatment followed by microwave-vacuum drying. J. Food Eng. 99(2), 121-127.
  • Chafer M., Gonzalez-Martinez C., Femandez B., Perez L., Chiralt A., 2003. Effect of blanching and vacuum pulse application on osmotic dehydration of pear. Food Sci. Technol. Int. 9(5), 321-328.
  • Chenlo F., Chaguri L., Santos F., Moreira R., 2006. Osmotic dehydration/impregnation kinetics of padrón pepper (Capsicum annuum L. Longum) with sodium chloride Solutions: process modelling and colour analysis. Food Sci. Technol. Int. 12(3), 221-227.
  • Ciurzyńska A., Lenart A., 2010. Structural impact of osmotically pretreated freeze-dried strawberries on their mechanical properties. Int. J. Food Prop. 13(5), 1134-1149.
  • Corrêa J.L., Pereira L.M., Vieira G.S., Hubinger M.D., Mass transfer kinetics of pulsed vacuum osmotic dehydration of guavas. J. Food Eng. 96(4), 498-504.
  • Deng Y., Zhao Y., 2008. Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji). LWT - Food Sci. Technol. 41(9), 1575-1585.
  • Derossi A., De Pilli T., Severini C., McCarthy M.J., 2008. Mass transfer during osmotic dehydration of apples. J. Food Eng. 86,519-528.
  • Dolatowski Z.J., Stadnik J., Stasiak D., 2007. Applications of ultrasound in food technology. Acta Sci. Pol. Technol. Aliment. 6 (3), 89-99.
  • Escriche I., Garcia-Pinchi R., Andres, A., Fito P., 2000. Osmotic dehydration of kiwifruit (Actinidia chinensis): fluxes and mass transfer kinetics. J. Food Process Eng. 23(3), 191-205.
  • Fernandes A.N., Rodrigues S., 2007. Ultrasound as pretreatment for drying of fruits: dehydration of banana. J. Food Eng. 82, 261-267.
  • Ferrari C.C., Arballo J.R., Mascheroni R.H., Hubinger M.D., Modelling of mass transfer and texture evaluation during osmotic dehydration of melon under vacuum. Int. J. Food Sci. Technol. 46(2), 436-443.
  • Fito P., 1994. Modelling of vacuum osmotic dehydration of food. J. Food Eng. 22,313-328.
  • Garcia-Noguera J., O1iveira F.I., Weller C.L., Rodrigues S., Femandes F.A., 2012. EfFect of ultrasonic and osmotic dehydration pretreatments on the colour of freeze dried strawberries. J. Food Sci. Technol. DOI 10.1007/ sl3197-012-0724-x.
  • Giraldo G., Talens R, Fito R, Chiralt A., 2003. Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. J. Food Eng. 58( 1), 33-43.
  • Kapturowska A., Stolarzewicz I., Chmielewska I., Białecka-Florjańczyk E., 2011. Ultradźwięki - narzędzie do inaktywacji komórek drożdży oraz izolacji białek wewnątrzkomórkowych [Ultrasounds - a tool to inactivate yeast and to extract intracellular protein], Żywn. Nauka. Technol. Jakość 4 (77), 160-171 [in Polish].
  • Kek S.R, Chin N.L., Yusof Y.A., 2013. Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food Bioprod. Process. 91(4), 495-506.
  • Kowalska H., Lenart A., 2001. Mass exchange during osmotic pretreatment of vegetables. J. Food Eng. 49(2), 137-140.
  • Kowalska H., Gierada K., 2005. Nasycanie jabłek w celu otrzymania żywności wzbogaconej witaminą C [Impregnation of the apples in order to getting food enriched with vitamin C], Inż. Roln. 71(11), 267-272 [in Polish].
  • Kowalski S.J., Mierzwa D., Śronek B., 2009. Drying of osmotically dehydrated biological materials. Chem. Process Eng. 30, 559-568.
  • Kowalski S.J., Mierzwa D., 2013. Influence of osmotic pretreatment on kinetics of convective drying and quality of apples. Drying Techn. 31(15), 1849-1855.
  • Konopacka D., Jesionkowska K., Klewicki R., Bonazzi C., 2009. The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit. J. Hortic. Sci. Biotechnol. 1, 80.
  • Knorr D., 2003. Impact of non-thermal processing on plant metabolites. J. Food Eng. 56(2), 131-134.
  • Lenart A., 1990. Osmotyczne odwadnianie jako obróbka wstępna przed suszeniem konwekcyjnym owoców i warzyw [Osmotic dehydration as a pretreatment of fruits and vegetables before convective dryling], Przem. Spoż. 12, 307-309.
  • Lewicki P.P., Lenart A., 2006. Osmotic dehydration of fruits and vegetables. In: Handbook of industrial drying-3. Ed. A.S. Mujumdar. Taylor and Francis, 665-688.
  • Lombard G.E., O1iveira J.C., Fito P., Andrés A., 2008. Osmotic dehydration of pineapple as a pretreatment for further drying. J. Food Eng. 85(2), 277-284.
  • Marani C.M., Agnelli M.E., Mascheroni R.H., 2007. Osmo-frozen fruits: mass transfer and quality evaluation. J. Food Eng. 79(4), 1122-1130.
  • Matusek A., Czukor B., Merész P., Ӧrsi F., 2008. Comparison of diffusion of fructo-oligosaccharide components during vacuum impregnation and osmotic dehydration. Eur. Food Res. Technol. 227(2), 417-423.
  • Matuska M., Lenart A., Lazarides H.N., 2006. On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake. J. Food Eng. 72(1), 85-91.
  • Moreira R., Chenlo F., Torres M.D., Vazquez G., 2007. Effect of stirring in the osmotic dehydration of chestnut using glycerol Solutions. LWT - Food Sci. Technol. 40(9), 1507-1514.
  • Moreno J., Simpson R., Estrada D., Lorenzen S., Moraga D., Almonacid S., 2011. Effect of pulsed-vacuum and ohmic heating on the osmodehydration kinetics, physi- cal properties and microstructure of apples (cv. Granny Smith). Innovat. Food Sci. Emerg. Technol. 12(4), 562-568.
  • Mujica-Paz H., Valdez-Fragoso A., Lopez-Malo A., Palou E., Welti-Chanes J., 2003 a. Impregnation properties of some fruits at vacuum pressure. J. Food Eng. 56, 307-314.
  • Mujica-Paz A., Valdez-Fragoso A., Lopez-Malo A., Palou E., Welti-Chanes J., 2003 b. Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. J. Food Eng. 57(4), 305-314.
  • Nieto A.B., Salvatori D.M., Castro M.A., Alzamora S.M., 2004. Structural changes in apple tissue during glucose and sucrose osmotic dehydration: shrinkage, porosity, density and microscopic features. J. Food Eng. 61, 2, 269-278.
  • Nowacka M., Tyiewicz U., Laghi L., Dalia Rosa M., Witrowa-Rajchert D., 2014. Effect of ultrasound treatment on the water State in kiwifruit during osmotic dehydration. Food Chem. 144, 18-25.
  • Nuňez-Mancilla Y., Perez-Won M., Vega-Gálvez A., Arias V., Tabilo-Munizaga G., Briones-Labarca V., Di Scala K., 2011. Modeling mass transfer during osmotic dehydration of strawberries under high hydrostatic pressure conditions. Innovat. Food Sci. Emerg. Technol. 12(3), 338-343.
  • Nuňez-Mancilla Y., Perez-Won M., Uribe E., Vega-Gálvez A., Di Scala K., 2013. Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT -Food Sci. Technol. 52(2), 151-156.
  • Nuňez-Mancilla Y., Vega-Gálvez A., Perez-Won M., Zura L., Garcia-Segovia P., Di Scala K., 2014. Effect of osmotic dehydration under high hydrostatic pressure on microstructure, functional properties and bioactive compounds of strawberry (Fragaria Vesca). Food Bioprocess Technol. 7(2), 516-524.
  • Oliveira F.I., Gallão M.I., Rodrigues S., Fernandes A.N., 2011. Dehydration of malay apple (Syzygium malaccense L.) using ultrasound as pre-treatment. Food Bioprocess Technol. 4(4), 610-615.
  • Paes S.S., Stringari G.B., Laurindo J.B., 2007. Effect of vacuum and relaxation periods and solution concentration on the osmotic dehydration of apples. Int. J. Food Sci. Technol. 42(4), 441-447.
  • Panades G., Castro D., Chiralt A., Fito P., Nuňez M., Jimenez R., 2008. Mass transfer mechanisms occurring in osmotic dehydration of guava. J. Food Eng. 87(3), 386-390.
  • Pękosławska A., Lenart A., 2009. Wpływ rodzaju i stężenia substancji osmotycznej na przebieg odwadniania osmotycznego dyni [Effect of kind and concentration of osmotic solution on the kinetics of osmotic dehydration of pumpkin]. Żywn. Nauka Technol. Jakość 1 (62), 119- -127 [in Polish],
  • Pietrzak D., 2010. Perspektywy stosowania wysokich ciśnień w produkcji żywności wygodnej z mięsa drobiowego [Prospects for using high pressure technologies in manufacturing convenience food from poultry meat]. Żywn. Nauka Technol. Jakość 2(69), 16-28.
  • Pino J.A., Panades G., Fito P., Chiralt A., Ortega A., 2008. Influence of osmotic dehydration on the volatile profile of guava fruits. J. Food Qual. 31(3), 281-294.
  • Ramaswamy Fl.S., Nsonzi F., 1998. Convective-air drying kinetics of osmotically pre-treated blueberries. Drying Technol. 16(3-5), 743-759.
  • Rastogi N.K., Angersbach A., Knorr D., 2000. Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydra­tion. J. Food Eng. 45(1), 25-31.
  • Rastogi N.K., Niranjan K., 1998. Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. J. Food Sci. 63 (3), 508-511.
  • Rastogi N.K., Raghavarao K.S.M.S., 1997. Water and solute diffusion coefficients of carrot as a function of temperature and concentration during osmotic dehydration. J. Food Eng. 34(4), 429-440.
  • Rastogi N.K., Subramanian R., Raghavarao K.S.M.S., 1994. Application of high pressure technology in food industry. Indian Food Ind. 13, 30-34.
  • Rastogi N.K., Raghavarao K.S.M.S., Niranjan K., Knorr D., 2002. Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends Food Sci. Technol. 13(2), 48-59.
  • Rżąca M., Witrowa-Rajchert D., Tylewicz U., Dalla Rosa M., 2009. Wymiana masy w procesie osmotycznego odwadniania owoców kiwi [Mass exchange in osmotic dehydration process of kiwi ffuitsj. Żywn. Nauka Technol. Jakość 6(67), 140-149.
  • Santacruz-Vazquez C., Santacruz-Vazquez V., Jaramillo- Flores M.E., Chanona-Perez J., Welti-Chanes J., Gutiérrez-López G.F., 2008. Application of osmotic dehydra­tion processes to produce apple slices enriched with P-carotene. Drying Technol. 26(10), 1265-1271.
  • Saurel R., Raoult-Wack A.L., Rios G., Guilbert S., 1994. Mass transfer phenomena during osmotic dehydration of apple I. Fresh plant tissue. Int. J. Food Sci. Technol. 29(5), 531-542.
  • Sereno A.M., Moreira R., Martinez E., 2001. Mass transfer coefficients during osmotic dehydration of apple in single and combined aqueous Solutions of sugar and salt. J. Food Eng. 47(1), 43-49.
  • Shamaei S., Emam-Djomeh Z., Moini S., 2011. Ultrasoundassisted osmotic dehydration of cranberries: effect of finish drying methods and ultrasonic frequency ontextural properties. J. Text. Stud. 43, 133-141.
  • Simal S., Benedito J., Sanchez E.S., Rosselló C., 1998. Use of ultrasound to increase mass transport rates during osmotic dehydration. J. Food Eng. 36(3), 323-336.
  • Sopanangkul A., Ledward D.A., Niranjan K., 2002. Mass transfer during sucrose infusion into potatoes under high pressure. J. Food Sci. 67 (6), 2217-2220.
  • Tapia M.S., López-Malo A., Consuegra R., Corte P., Welti- Chanes J., 1999. Minimally processed papaya by vacuum osmotic dehydration (VOD) techniques/papaya mmimamente procesada mediante tćcnicas de deshidratación osmótica al vacio (VOD). Food Sci. Technol. Int. 5(1), 41-49.
  • Taiwo K.A., Eshtiaghi M.N., Ade-Omowaye B.I., Knorr D., 2003 a. Osmotic dehydration of strawberry halves: influence of osmotic agents and pretreatment methods on mass transfer and product characteristics. Int. J. Food Sci. Technol. 38(6), 693-707.
  • Taiwo K.A., Angersbach A., Knorr D., 2003 b. Effects of pulsed electric field on quality factors and mass transfer during osmotic dehydration of apples. J. Food Process Eng. 26(1), 31-48.
  • Torreggiani D., 1993. Osmotic dehydration in fruit and vegetable processing. Food Res. Int. 26(1), 59-68.
  • Warczok J., Ferrando M., López F., Pihlajamäki A., Gilell C., 2007. Reconcentration of spent Solutions from osmotic dehydration using direct osmosis in two configu- rations. J. Food Eng. 80(1), 317-326.
  • Wiktor A., Witrowa-Rajchert D., 2012. Zastosowanie pulsacyjnego pola elektrycznego do wspomagania procesów usuwania wody z tkanek roślinnych [Applying pulsed electric field to enhance plant tissue dehydration process], Żywn. Nauka Techn. Jakość 19(2), 22-32 [in Polishj.
  • Wiktor A., Śledź M., Nowacka M., Chudoba T., Witrowa- Rajchert D., 2014. Pulsed electric field pretreatment for osmotic dehydration of apple tissue: experimental and mathematical modeling studies. Drying Techn. 32(4), 408-417.
  • Viana A.D., Corrêa J.L., Justus A., 2013. Optimisation of the pulsed vacuum osmotic dehydration of cladodes of fodder palm. Int. J. Food Sci. Techn. 49(3), 726-732.
  • Verma D., Kaushik N., Rao RS., 2014. Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food Bioprocess Techn. 7, 1281-1297.
  • Xin Y., Zhang M., Adhikari B., 2013. Freezing characteristics and storage stability of broccoli (Brassica oleracea L. var. botrytis L.) under osmodehydroffeezing and ultra- sound-assisted osmodehydroffeezing treatments. Food Bioprocess Technol. DOI: 10.1007/sl 1947-013-1231-4.
  • Yadav A.K., Singh SV., 2012. Osmotic dehydration of fruits and vegetables: a review. J. Food Technol. DOI 10.1007/ s 13197-012-0659-2.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ab952d1e-0768-4e59-a6b8-58a250094145
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.