Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 1 |
Tytuł artykułu

Study of bioretention system on heavy-metal removal effect

Treść / Zawartość
Warianty tytułu
Języki publikacji
Bioretention is a typical low-impact development (LID) technology. This work used four different filler combinations of bioretention tank pilot test devices. Experiments on influence factors and intermittent operation were conducted. A continuous-run experiment was also performed to determine the purification ability of bioretention system on heavy metals. Results showed that the removal efficiency of heavy metals by fly ash tank was the most efficient, with a removal rate reaching 85.57%. The removal effect on highinfluent concentrations in filter was better than that in low-influent concentrations. With increased rainfall time intervals (antecedent dry time), heavy-metal removal efficiency improved. Temperature did not affect the removal efficiency of heavy metals on the whole based on the long duration of intermittent operation experiments. Moreover, the effluent heavy-metal concentration presented a descending trend during each simulation rainfall runoff event. During continuous operation test, heavy metals did not reach the exhaustion point in the experimental tanks, while the effluent concentration increased with increased water volume. According to PLS regression analysis, rainfall time interval was the most important factor affecting Zn removal rate, followed by filler characteristics, influent volume, and influent concentration.
Słowa kluczowe
Opis fizyczny
  • State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China
  • School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
  • State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China
  • School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
  • State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China
  • 1. BREZONIK P.L., STADELMANN T.H. Analysis and predictive models of stormwater runoff: volumes, loads, and pollutant concentrations from watersheds in the Twin cities metropolitan area, Minnesota, USA. Water Res. 36 (7), 1743, 2002.
  • 2. MOHAMMED A., BABATUNDE A. O. Modelling heavy metals transformation in vertical flow constructed wetlands. Ecol. Model. 354, 62, 2017.
  • 3. NADELLA S.R., FITZPATRICK J.L., FRANKLIN N., BUCKING C., SMITH S., WOOD C.M. Toxicity of dissolved Cu, Zn, Niand Cd to developing embryos of the blue mussel (Mytilustrossolus) and the protective effect of dissolved organic carbon. Comp. Biochem. Phys. C. 149 (3), 340, 2009.
  • 4. RYCEWICE-BORECKI M., MCLEAN J.E., DUPONT R.R. Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems. J. Environ. Manage. 166, 267, 2015.
  • 5. PAUS K.H., MORGAN J., GULLIVER J.S., HOZALSKI R.M. Effects of bioretention media compost volume fraction on toxic metals removal, hydraulic conductivity, and phosphorous release. J. Environ. Eng. 140 (10), 1, 2014.
  • 6. GULBAZ S., KAZEZYLLMAZ-ALHAN C.M., COPTY N.K. Evaluation of Heavy Metal Removal Capacity of Bioretention Systems. Water Air, Soil Pollut. 226 (11), 1, 2015.
  • 7. MANGANGK I.R., LIU A., EGODAWATTA P., GOONETILLEKE A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manage. 150C, 173, 2015.
  • 8. TROWSDALE S.A., SIMCOCK R. Urban stormwater treatment using bioretention. J. Hydrol. 397 (3-4), 167, 2011.
  • 9. DAVIS A.P., SHOKOUHIAN M., SHARMA H., MINAMI C. Laboratory study of biological retention for urban stormwater management. Water Environ. Res. 73 (1), 5, 2001.
  • 10. LU J.S., CHEN Y., ZHENG Q., RUI D.U., WANG S.P., WANG J.P. Derivation of Rainstorm Intensity Formula in Xi'an City. China water & waste water. 26 (17), 82, 2010 [in Chinese].
  • 11. CHEN H. The Characteristics and Simulation Study of Urban Non-point Source Pollution in Xi’an city. Xi’an: Xi’an Univ. of Tech. 2012 [in Chinese]
  • 12. LI J.K., LI Y., ZHANG J.Y., LI H.E., LI Y.J. Bio-Swale Column Experiments and Simulation of Hydrologic Impacts on Urban Road Stormwater Runoff. Plo. J. Environ. Stud. 25 (1), 173, 2016.
  • 13. DEBUSK K.M., WYNN T.M. Storm-Water Bioretention for Runoff Quality and Quantity Mitigation. J. Environ. Eng. 137 (9), 800, 2011.
  • 14. ZGHEIB S., MOILLERON R., SAAD M., CHEBBO G. Partition of pollution between dissolved and particulate phases: What about emerging substances in urban stormwater catchments? Water Res. 45 (2), 913, 2011.
  • 15. MOREIRA C.S., ALLEONI L.R.F. Adsorption of Cd, Cu, Ni and Zn in tropical soils under competitive and noncompetitive systems. Sci. Agr. 67 (3), 301, 2010.
  • 16. JONES P.S., DAVIS A.P. Spatial Accumulation and Strength of Affiliation of Heavy Metals in Bioretention Media. J. Environ. Manage. 139 (4), 479, 2013.
  • 17. BLECKEN G.T., ZINGER Y., DELETIC A., FLETCHER T.D., VIKLANDER M. Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater biofilters. Water Res. 43 (18), 4590, 2009.
  • 18. FUERHACKER M., HAILE T.M., MONAI B., MENTLER A. Performance of a filtration system equipped with filter media for parking lot runoff treatment. Desalination, 275 (1-3), 118, 2011.
  • 19. GUPTA H.V., KLING H. On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics. Water Resour. Res. 47 (10), 125, 2011.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.