PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 33 | 2 |

Tytuł artykułu

Short-term cold stress in two cultivars of Digitaria eriantha: effects on stress-related hormones and antioxidant defense system

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The two cultivars of Digitaria eriantha: cv. Sudafricana (a cold-sensitive cultivar) and cv. Mejorada INTA (a cold-resistant cultivar) were exposed to low temperature andcompared in terms of the involvement of abscisic acid (ABA) and catabolites, jasmonates, and antioxidant defense in cold tolerance. Cold stress caused a greater ABA increase in cv. Mejorada INTA than in cv. Sudafricana. In both cultivars abscisic acid glucose ester and dihydrophaseic acid were the most abundant catabolites. Cold treatment decreased JA in leaves of both cultivars. In cv. Sudafricana, 12-hydroxyjasmonate (12-OH-JA) decreased and 12-oxophytodienoic acid increased. In regard to antioxidant defense, both cultivars increased the non-protein thiols in response to cold stress. However, reduced glutathione (GSH) level was higher in leaves of cv. Mejorada INTA than cv. Sudafricana. Cold-treated leaves of cv. Sudafricana increased thiobarbituric acid-reactive substances (TBARS), but cv. Mejorada INTAleaves showed no such increase. Superoxide dismutase activity decreased and ascorbate peroxidase activity increased in cold-treated leaves of cv. Sudafricana. No significant change of these enzymes was observed for cv. Mejorada INTA. The cold tolerance of cv. Mejorada INTA could be related to JA, 12-OH-JA andGSHhigh basal contents, ABA increase, and TBARS stability after cold treatment.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

33

Numer

2

Opis fizyczny

p.497-507,fig.,ref.

Twórcy

autor
  • Laboratorio de Fisiologia Vegetal, Departamento de Ciencias Agropecuarias, Facultad de Ingenieria y Ciencias Economico-Sociales (FICES), Universidad National de San Luis, Avda, 25 de Mayo 384 5730 Villa Mercedes, San Luis, Argentina
  • Laboratorio de Fisiologia Vegetal, Departamento de Ciencias Agropecuarias, Facultad de Ingenieria y Ciencias Economico-Sociales (FICES), Universidad National de San Luis, Avda, 25 de Mayo 384 5730 Villa Mercedes, San Luis, Argentina
autor
  • Laboratorio de Quimica Biologica, Departamento de Bioquimica y Ciencias Biologicas, FQByF, Universidad National de San Luis, Chacabuco 907, 5732 San Luis, Argentina
autor
  • Laboratorio de Quimica Biologica, Departamento de Bioquimica y Ciencias Biologicas, FQByF, Universidad National de San Luis, Chacabuco 907, 5732 San Luis, Argentina
  • Laboratorio de Quimica Biologica, Departamento de Bioquimica y Ciencias Biologicas, FQByF, Universidad National de San Luis, Chacabuco 907, 5732 San Luis, Argentina
autor
  • Laboratorio de Fisiologia Vegetal, Departamento de Ciencias Naturales, Universidad National de Rio Cuarto, 5800 Rio Cuarto, Argentina
autor
  • (Laboratorio de Fisiologia Vegetal, Departamento de Ciencias Naturales, Universidad National de Rio Cuarto, 5800 Rio Cuarto, Argentina

Bibliografia

  • Ahlfors R, Lång S, Overmyer K, Jaspers P, Brosché M, Tauriainen A, Kollist H, Touminen H, Belle-Boix E, Piippo M, Inzé D, Palva ET, Kangasjärvi J (2004) Arabidopsis RADICAL-INDUCED CELL DEATH1belongs to theWWEprotein–protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate response. Plant Cell 16:1925–1937
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399
  • Babar Ali M, Yu KW, Hahn EJ, Paek KY (2006) Methyl jasmonate and salicylic acid elicitation induces ginsenosides accumulation, enzymatic and non-enzymatic antioxidant in suspension culture Panax ginseng roots in bioreactors. Plant Cell Rep 25:613–620
  • Balbi V, Deboto A (2008) Jasmonate signaling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol 177:301–318
  • Ball CR (1966) Estimation and identification of thiols in rat spleen after cysteine or glutathione treatment: relevance to protection against nitrogen mustards. Biochem Pharmacol 15:809–816
  • Balsevich JJ, Cutler AJ, Lamb N, Friesen LJ, Kurz EU, Perras MR, Abrams SR (1994) Response of cultured maize cells to (+)- abscisic acid, (-)-abscisic acid and their metabolites. Plant Physiol 106:135–142
  • Beyer FW, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 16:559–566
  • Boettcher C, Weiler EW (2007) cyclo-Oxylipin-galactolipids in plants: occurrence and dynamics. Planta 226:629–637
  • Bracale M, Coraggio L (2003) Cellular responses and molecular strategies for the adaptation to chilling and freezing stresses in plants. In: Troppi LS, Pawlik-Skowro B (eds) Abiotic stresses in plants. Klumer, Dordrecht, pp 36–53
  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
  • Buseman CM, Tamura P, Sparks AA, Baughman EJ, Maatta S, Zhao J, Roth MR, Esch SW, Shah J, Williams TD, Welti R (2006) Wounding stimulates the accumulation of glycerolipids containing oxophytodienoic acid and dinor-oxophytodienoic acid in Arabidopsis leaves. Plant Physiol 142:28–39
  • Chen GX, Asada K (1989) Ascorbate peroxidase in tea leaves: occurrence of two isoenzymes and the difference in their enzymatic and molecular properties. Plant Cell Physiol 30:987–998
  • Cutler A, Krochko J (1999) Formation and breakdown of ABA. Trends Plant Sci 4:472–478
  • del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 14:330–335
  • Durgbanshi A, Arbona V, Pozo O, Miersch O, Sancho JV, Gómez Cadenas A (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatographyelectrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442
  • Garbero M (2010) Estrés por frío en Digitaria eriantha: forrajera promisoria para zonas semiáridas. PhD thesis, Universidad Nacional de Río Cuarto
  • Gusta LV, Trischuk R, Weiser CJ (2005) Plant cold acclimation: the role of abscisic acid. J Plant Growth Regul 24:308–318
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Huang M, Guo Z (2005) Responses of antioxidative system to chilling stress in two rice cultivars differing in sensitivity. Biol Plant 49:81–84
  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007
  • Janowiak F, Maas B, Dörffling K (2002) Importance of abscisic acid for chilling tolerance of maize seedlings. J Plant Physiol 159:635–643
  • Jiang F, Hartung W (2007) Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot 59:37–43
  • Jiang M, Zang J (2001) Effects of abscisic acid on active oxygen species, antioxidative defense system and oxidative damage in leaves of maize seedling. Plant Cell Physiol 42:1265–1273
  • Jung C, Lyou SH, Yeu SY, Kim MA, Rhee S, Kim M, Lee JS, Choi YD, Cheong J-J (2007) Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep 26:1053–1063
  • Kazan K, Manners JM (2008) Jasmonate signaling: toward and integrated view. Plant Physiol 146:1459–1468
  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the ‘‘oxylipin signature’’ in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123:177–187
  • Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 80-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656
  • Lee KH, Piao HL, Kin H-Y, Choi SM, Jiang F, Hartung W, Hwang I, Kwak JM, Lee I-J, Hwang I (2006) Activation of glucosidase via stress-induced polymerization rapidly increase active pools of abscisic acid. Cell 126:1109–1120
  • Lu S, Guo Z, Peng X (2003) Effects of ABA and S-3307 on drought resistance and antioxidative enzyme activity of turfgrass. J Hortic Sci Biotechnol 73:663–666
  • Lu S, Su W, Li H, Guo Z (2009) Abscisic acid improves drought tolerance of triploid bermudagrass and involves H₂O₂- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem 47:132–138
  • Marion-Poll A, Leung J (2006) Abscisic acid synthesis, metabolism and signal transduction. In: Hedden P, Thomas SG (eds) Plant hormone signaling, annual plant review. Blackwell, Oxford, pp 1–35
  • Menéndez-Benavente L, Teixeira FK, Kamei CLV, Pinheiro MM (2004) Salt stress induces expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331
  • Miersch O, Neumerkel J, Dippe M, Stenzel I, Wasternack C (2008) Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol 177:114–127
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol 143:1398–1407
  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Physiol Plant Mol Biol 56:165–185
  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158
  • Ren H, Gao Z, Chen L, Wei K, Liu J, Fan Y, Davies WJ, Jia W, Zhang J (2007) Dynamic analysis of ABA accumulation in relation to the rate of ABA catabolism in maize tissue under water stress. J Exp Bot 58:211–219
  • Schupp R, Rennenberg H (1988) Diurnal changes in the glutathione content of spruce needles (Picea abies L.). Plant Sci 57:113–117
  • Setha S, Kondo S, Hirai N, Ohigashi H (2005) Quantification of ABA and its metabolites in sweet cherries using deuterium-labeled internal standards. Plant Growth Regul 45:183–188
  • Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545
  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697
  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress response and development. Prog Nucleic Acid Res Mol Biol 72:165–221
  • Weber H (2002) Fatty acid-derived signals in plants. Trends Plant Sci 7:217–224
  • Wilen RW, Ewan BE, Gusta LV (1994) Interaction of ABA and jasmonic acid on the inhibition of seed germination and the induction of freezing tolerance. Can J Bot 72:1009–1017
  • Wong CE, Li Y, Labbe A, Guevara D, Nuin P, Whitty B, Diaz C, Golding GB, Gray GR, Weretilnyk EA, Griffith M, Moffatt BA (2006) Transcriptional profiling implicates novel interactions between abiotic stress and hormonal response in Thellungiella, a close relative of Arabidopsis. Plant Physiol 140:1437–1450
  • Xin ZY, Zhou X, Pilet PE (1997) Level changes of jasmonic, abscisic and indole-3yl-acetic acids in maize under desiccation stress. J Plant Physiol 151:120–124
  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165–S183

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-ab03f586-c99e-4cad-9a87-3468defb08f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.