PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 40 | 2 |

Tytuł artykułu

Gastrointestinal bacteria in rohu, Labeo rohita (Actinopterygii: Cypriniformes: Cyprinidae): scanning electron microscopy and bacteriological study

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Fish gut bacteria may be used as probiotics for fish. Those occurring in the gastrointestinal (GI) tract of rohu, Labeo rohita (Hamilton, 1822), have not been sufficiently studied. This study was intended: to detect bacteria in the intestine of rohu by scanning electron microscopy (SEM); to evaluate the existence of heterotrophic, proteolytic, amylolytic, and cellulolytic bacteria in three different regions of the gut of rohu; and to identify more than 25% of the isolated gut bacteria by 16S rRNA. Materials and Methods. The GI tracts were removed and divided into three regions: foregut, midgut, and hindgut. Tissues used for SEM were fixed in glutaraldehyde, washed in heparinised saline, dehydrated in graded ethanol, fixed in amyl acetate, dried with liquid nitrogen, coated with gold, observed, and photographed. Homogenates of the intestinal segments were spread onto tryptic soy agar plates and selected nutrient media plates to determine heterotrophic, proteolytic, amylolytic, and cellulolytic bacterial populations, respectively. Of the 59 adherent bacterial strains isolated from the GI tract of rohu 16 isolates were tried for identification by 16S rRNA genes. Results. Bacteria were observed to adhere to the gut enterocyte surfaces. Population level of enzyme-producing bacteria was higher in the midgut and hindgut regions than that observed in the foregut region. Furthermore, dense amylolytic and cellulolytic bacterial population in comparison to the proteolytic population was noticed in the GI tract of L. rohita. Highest density of the cellulolytic bacterial population in the hindgut region may indicate that fermentative degradation occurs in this part of the GI tract. Eleven adherent bacterial strains belonged to bacilli, 2 strains to Pseudomonas, 1 strain to Aeromonas, 1 strain was most closely related to Enterobacter, while 1 strain showed < 97% 16S rRNA sequence similarity in BLAST program was treated as unknown. Conclusion. Autochthonous bacteria were present in the GI tract of rohu and that the autochthonous microbiota possess enzymatic activity that might be beneficial for the fish.

Wydawca

-

Rocznik

Tom

40

Numer

2

Opis fizyczny

p.129-135,fig.,ref.

Twórcy

autor
  • Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, West Bengal, India
autor
autor
autor

Bibliografia

  • Austin B. 2002. The bacterial microflora of fish. The Scientific World Journal 2 (3): 558–572. DOI: 10.1100/tsw.2002.137
  • Bairagi A., Ghosh K.S., Sen S.K., Ray A.K. 2002. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquaculture International 10 (2): 109–121. DOI: 10.1023/A:1021355406412.
  • Balestrazzi A., Bonadei M., Zelasco S., Quattrini E., Calvio C., Galizzi A., Carbonera D. 2008. Recovery of useful traits from isolates inhabiting an agricultural soil cultivated with herbicide-resistant poplars. Canadian Journal of Microbiology 54 (3): 201–208. DOI: 10.1139/W07-136.
  • Cahill M.M. 1990. Bacterial flora of fishes: A review. Microbial Ecology 19 (1): 21–41. DOI: 10.1007/BF02015051.
  • Das K.M., Tripathi S.D. 1991. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture 92: 21–32. DOI: 10.1016/0044-8486(91)90005-R.
  • Esakkiraj P., Immanuel G., Sowmya S.M., Iyapparaj P., Palavesam A. 2009. Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess and Technology 2 (4): 383–390. DOI: 10.1007/s11947-007-0046-6.
  • Gatesoupe F.J. 1999. The use of probiotics in aquaculture. Aquaculture 180 (1–2): 147–165. DOI: 10.1016/S0044-8486(99)00187-8.
  • Ghosh K., Sen S.K., Ray A.K. 2002a. Characterization of bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significant in digestion. Journal of Applied Aquaculture 12 (3): 33–42. DOI: 10.1300/J028v12n03_04.
  • Ghosh K., Sen S.K., Ray A.K. 2002b. Growth and survival of rohu, Labeo rohita (Hamilton) spawn fed diets supplemented with fish intestinal microflora. Acta Ichthyologica et Piscatoria 32 (1): 83–92.
  • Ghosh K., Sen S.K., Ray A.K. 2003. Supplementation of an isolated fish gut bacterium, Bacillus circulans, in formulated diets for rohu, Labeo rohita, fingerlings. The Israeli Journal of Aquaculture – Bamidgeh 55 (1): 13–21.
  • Hansen G.H., Olafsen J.A. 1999. Bacterial interactions in early life stages ofmarine cold water fish.Microbial Ecology 38 (1): 1–26. DOI: 10.1007/s002489900158.
  • Hellberg H., Bjerkas I. 2000. The anatomy of the stomach, oesophagus and intestine in common wolfish (Anarhichas lupus L.), a basis for diagnostic work and research. Acta Veterinaria Scandinavica 41: 283–297.
  • Iversen C., Lehner A., Mullane N., Bidlas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., Joosten H. 2007. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies. BMC Evolutionary Biology 7: 64. DOI: 10.1186/1471-2148-7-64.
  • Kar N., Ghosh K. 2008. Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish Journal of Fisheries and Aquatic Sciences 8 (1): 115–120.
  • Kar N., Roy R.N., Sen S.K., Ghosh K. 2008. Isolation and characterization of extracellular enzyme producing bacilli in the digestive tracts of rohu, Labeo rohita (Hamilton) and Murrel, Channa punctatus (Bloch). Asian Fisheries Science 21 (4): 421–434.
  • Kumari S., Prasad B.N., Kumari G., Quasim A., Sinha B.K., Singh J.N. 2001. Microbiological quality of fish, rohu marketed in Patna and its public health significance. Journal of Food Science and Technology 38 (6 ): 607–608.
  • Mondal S., Roy T., Ray A.K. 2010. Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. Journal of the World Aquaculture Society 41 (3): 369–377. DOI: 10.1111/j.1749-7345.2010.00378.x.
  • Mondal S., Roy T., Sen S.K., Ray A.K. 2008. Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyologica et Piscatoria 38 (1): 1–8. DOI: 10.3750/AIP2008.38.1.01.
  • Nagvenkar G.S., Nagvenkar S.S., Rivonker C.U., Sangodkar U.M.X. 2006. Microbial diversity and enzyme production in mullet Mugil cephalus L. (Pisces) along Goa, west coast of India. Indian Journal of Marine Sciences 35 (1): 36–42.
  • Orozova P., Barker M., Austin D.A., Austin B. 2009. Identification and pathogenicity to rainbow trout, Oncorhynchus mykiss (Walbaum), of some aeromonads. Journal of Fish Diseases 32 (10): 865–871. DOI: 10.1111/j.1365-2761.2009.01065.x.
  • Pan X.,Wu T., Zhang L., Song Z., Tang H., Zhao Z. 2008. In vitro evaluation on adherence and antimicrobial properties of a candidate probiotic Clostridium butyricum CB2 for farmed Fish. Journal of Applied Microbiology 105 (5): 1623–1629. DOI: 10.1111/j.1365-2672.2008.03885.x.
  • Ray A.K., Roy T., Mondal S., Ringø E. 2010. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research 41 (10): 1462–1469. DOI: 10.1111/j.1365-2109.2009.02437.x.
  • Ringø E., Birkbeck T.H. 1999. Intestinal microflora of fish larvae and fry. Aquaculture Research 30 (2): 73–93.
  • Ringø E., Lødemel J.B., Myklebust R., Kaino T., Mayhew T.M., Olsen R.E. 2001. Epithelium-associated bacteria in the gastrointestinal tract of Arctic charr (Salvelinus alpinus L.). An electron microscopical study. Journal of Applied Microbiology 90 (2): 294–300. DOI: 10.1046/j.1365-2672.2001.01246.x.
  • Ringø E., Myklebust R., Mayhew T.M., Olsen R.E. 2007. Bacterial translocation and pathogenesis in the digestive tract of larvae and fry. Aquaculture 268 (1–4): 251–264. DOI: 10.1016/j.aquaculture.2007.04.047.
  • Ringø E., Olsen R.E., Mayhew T.M., Myklebust R. 2003. Electron microscopy of the intestinal microflora of fish. Aquaculture 227 (1–4): 395–415. DOI: 10.1016/j.aquaculture.2003.05.001.
  • Ringø E., Sperstad S., Kraugerud O.F., Krogdahl Å. 2008. Use of 16S rRNA gene sequencing analysis to characterise culturable intestinal bacteria in Atlantic salmon (Salmo salar) fed diets with cellulose or non-starch polysaccharides from soy. Aquaculture Research 39 (10): 1087–1100. DOI: 10.1111/j.1365-2109.2008.01972.x.
  • Ringø E., Sperstad S., Myklebust R., Mayhew T.M., Olsen R.E. 2006. The effect of dietary inulin on aerobic bacteria associated with hindgut of Arctic charr (Salvelinus alpinus L.). Aquaculture Research 37 (9): 891–897. DOI: 10.1111/j.1365-2109.2006.01509.x.
  • Ringø E., Strøm E., Tabachek J.-A. 1995. Intestinal microflora of salmonids: a review. Aquaculture Research 26 (10): 773–789. DOI: 10.1111/j.1365-2109.1995.tb00870.x.
  • Roy T., Mondal S., Ray A.K. 2009. Phytase-producing bacteria in the digestive tracts of some freshwater fish. Aquaculture Research 40 (3): 344–353. DOI: 10.1111/j.1365-2109.2008.02100.x.
  • Saha S., Roy R.N., Sen S.K., Ray A.K. 2006. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research 37 (4): 380–388. DOI: 10.1111/j.1365-2109.2006.01442.x.
  • Spanggaard B., Huber I., Nielsen J., Nielsen T., Appel K.F., Gram L. 2000. The microflora of rainbow trout intestine: a comparison of traditional and molecular identification. Aquaculture 182 (1–2): 1–15. DOI: 10.1016/S0044-8486(99)00250-1.
  • Stackebrandt E., Goebel B.M. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 44: 846–849. DOI: 10.1099/00207713-44-4-846.
  • Vine N.G., Leukes W.D., Kaiser H., Daya S., Baxter J., Hecht T. 2004. Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. Journal of Fish Diseases 27 (6): 319–326. DOI: 10.1111/j.1365-2761.2004.00542.x.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-aaeda1d5-44de-43fb-bb33-8b2271751bf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.