Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 03 |

Tytuł artykułu

Changes in the proteome of pea (Pisum sativum L.) seeds germinating under optimal and osmotic stress conditions and subjected to post-stress recovery

Warianty tytułu

Języki publikacji



Plants growing under natural conditions are exposed to a variety of stresses, which can lead to undesirable changes in the physiological processes and yielding. These changes can be regulated at different levels, resulting in the synthesis of specific proteins which participate in the plant’s response to stress. The purpose of this study was to determine changes in the accumulation of proteins in germinating pea (Pisum sativum L.) seeds under optimal and osmotic (short- and long-term) stress conditions as well as recovery following a short-term stress. For identification of the proteins, two-dimensional electrophoresis and mass spectrometry (MALDI-TOF) were employed. Germination in optimal conditions increased the accumulation of several proteins involved in glycolysis, Krebs cycle, synthesis of fatty acids, cell growth, cellular transport and detoxification. Osmotic stress, in turn, depressed the accumulation of proteins involved in glycolysis, synthesis of fatty acids, detoxication, methionine conversions, cellular transport, translation, growth control and of cytoskeletal proteins, but raised the accumulation of enzymes of the tricarboxylic acid cycle as well as proteins participating in signal transduction and protection (chaperones). One protein, 6a-hydroxymaackian-3-O-methyltransferase, which is involved in the synthesis of pisatin, was present only under osmotic stress conditions and recovery. Pisatin is synthesized mainly in response to microbiological infections and under stress conditions, indicating its key role in the acquisition of stress tolerance by plants.

Słowa kluczowe








Opis fizyczny



  • Department of Biochemistry, Faculty of Biology, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn-Kortowo, Olsztyn, Poland
  • UMR 102 INRA/ENESAD, Genetics and Ecophysiology of Grain Legumes, 21065, Dijon, France
  • Agro-M/INRA UR 1199 Proteomique, 2 Place Viala, bat 13, 34060, Montpellier Cedex 1, France
  • Department of Biochemistry, Faculty of Biology, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego St. 1A, 10-957 Olsztyn-Kortowo, Olsztyn, Poland


  • Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G, Soll J (1992) 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci 17:498–501. doi:10.1016/0968-0004(92)90339-B
  • Alvim FC, Carolino SMB, Cascardo JCM, Nunes CC, Martinez CA, Otoni WC, Fontes EPB (2001) Enhanced accumulation of BiP in transgenic plants confers tolerance to water stress. Plant Physiol 126:1042–1054. doi:10.1104/pp.126.3.1042
  • Babakov AV, Chelysheva VV, Klychnikov OI, Zorinyanz SE, Trofimova MS, De Boer AH (2000) Involvement of 14-3-3 proteins in the osmotic regulation of H+-ATPase in plant plasma membrane. Planta 211:446–448. doi:10.1007/s004250000347
  • Banzai T, Hershkovits G, Katcoff DJ, Hanagata N, Dubinsky Z, Karube I (2002) Identification and characterization of mRNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove, Bruguiera gymnorrhiza. Plant Sci 162:499–505. doi:10.1016/S0168-9452(01)00601-X
  • Bazzaz FA (2001) Plant biology in the future. Proc Natl Acad Sci 98:5441–5445. doi:10.1073/pnas.101093298
  • Bensen RJ, Boyer JS, Mullet JE (1988) Water deficit-induced changes in abscisic acid, growth, polysomes, and translatable RNA in soybean hypocotyls. Plant Physiol 88:289–294. doi:10.1104/pp.88.2.289
  • Benz R (1985) Porin from bacterial and mitochondrial outer membranes. Crit Rev Biochem 19:145–190. doi:10.3109/10409238509082542
  • Bevan M, Bansroft I, Bent E, Love K, Goodman H, Dean C, et al (1998) Analysis of 1,9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488
  • Bewley JD, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York
  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203
  • Borch J, Bych K, Roepstrorff P, Palmgren MG, Fuglsang AT (2002) Phosphorylation-independent interaction between 14-3-3 protein and the plant plasma membrane H+-ATPase. Biochem Soc Trans 30:411–415. doi:10.1042/BST0300411
  • Boyer JS (1982) Plant productivity and environment potential for increasing crop plant productivity, genotypic selection. Science 218:443–448
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132. doi:10.1093/jxb/44.1.127
  • Camoni L, Harper JF, Palmgren MG (1998) 14-3-3 proteins activate a plant calcium-dependent protein kinase (CDPK). FEBS Lett 430:381–384. doi:10.1016/S0014-5793(98)00696-6
  • Cascardo JCM, Almeida RS, Buzeli RAA, Carolino SMB, Otoni WC, Fontes EPB (2000) The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem 275:14494–14500. doi:10.1074/jbc.275.19.14494
  • Chaumont F, Barrieu F, Herman EM, Chrispeels MJ (1998) Characterization of a maize tonoplast aquaporin expressed in zones of cell division and elongation. Plant Physiol 117:1143–1152. doi:10.1104/pp.117.4.1143
  • Chaves MM, Maroco J, Pereira J (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:2639–2647. doi:10.1071/FP02076
  • Comparot S, Lingiah G, Martin T (2003) Function and specifity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. J Exp Bot 54:595–604. doi:10.1093/jxb/erg057
  • Conley TR, Peng HP, Shih MC (1999) Mutations affecting induction of glycolytic and fermentative genes during germination and environmental stresses in Arabidopsis. Plant Physiol 119:599–607. doi:10.1104/pp.119.2.599
  • Couper A, Eley D (1984) Surface tension of polyethylene glycol solutuion. J Polym Sci 3:345–349
  • De Bruxelles GL, Peacock WJ, Dennis ES, Dolferus R (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 111:381–391. doi:10.1104/pp.111.2.381
  • Dehesh K, Tai H, Edwards P, Byrne J, Jaworski JG (2001) Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis. Plant Physiol 125:1103–1114. doi:10.1104/pp.125.2.1103
  • Dihazi H, Asif AR, Agarwal NK, Doncheva Y, Müller G (2005) Proteomic analysis of cellular response to osmotic stress in thick ascending limb of henle’s loop (TALH) cells. Mol Cell Proteomics 4:1445–1458. doi:10.1074/mcp.M400184-MCP200
  • Espartero J, Pintor-Toro JA, Pardo JM (1994) Differential accumulation of S-adenosylmethionine synthetase transcripts in response to salt stress. Plant Mol Biol 25:217–227. doi:10.1007/BF00023239
  • Esteban R, Dopico B, Muñoz FJ, Romo S, Labrador E (2002) A seedling specific vegetative lectin gene is related to development in Cicer arietinum. Physiol Plant 114:619–626. doi:10.1034/j.1399-3054.2002.1140416.x
  • Ferl RJ (1996) 14-3-3 proteins and signal transduction. Annu Rev Plant Physiol Plant Mol Biol 47:49–73. doi:10.1146/annurev.arplant.47.1.49
  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848. doi:10.1104/pp.126.2.835
  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002a) Importance of methionine biosynthesis for Arabidopsis seed germination and seedling growth. Physiol Plant 116:238–247. doi:10.1034/j.1399-3054.2002.1160214.x
  • Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2002b) Proteomics of Arabidopsis seed germination: a comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837. doi:10.1104/pp.002816
  • Gepts P, Beavis WD, Brummer C, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235. doi:10.1104/pp.105.060871
  • Gevaert K, Demol H, Sklyarova T, Vandekerckhove J, Houthaeve T (1998) A peptide concentration and purification method for protein characterization in the subpicomole range using matrix assisted laser desorption/ionization-postsource decay (MALDIMS) sequencing. Electrophoresis 19:909–917. doi:10.1002/elps.1150190606
  • Gill PK, Sharma AD, Singh P, Bhullar SS (2002) Osmotic stress-induced changes in germination, growth and soluble sugar content of Sorghum bicolor (L.) moench seeds. Bulg J Plant Physiol 28:12–25
  • Gong P, Wilke BM, Strozzi E, Fleischmann S (2001) Evaluation and refinement of a continuous seed germination and early seedling growth test for the use in the ecotoxicological assessment of soils. Chemosphere 44:491–500. doi:10.1016/S0045-6535(00)00280-0
  • Görg A, Postel W, Weser J, Günther S, Strahler JR, Hanash SM, Somerlot L (1987) Elimination of point streaking on silver-stained two-dimensional gels by addition of iodoacetamide to the equilibration buffer. Electrophoresis 8:122–124. doi:10.1002/elps.1150080207
  • Graham PH, Vance CP (2003) Legumes. Importance and constraints to greater use. Plant Physiol 131:872–877. doi:10.1104/pp.017004
  • Graves PR, Haystead TAJ (2002) Molecular biologist’s guide to proteomics. Microbiol Mol Biol R 66:39–63. doi:10.1128/MMBR.66.1.39-63.2002
  • Haake V, Zrenner R, Sonnewald U, Stitt M (1998) A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants. Plant J 14:147–157. doi:10.1046/j.1365-313X.1998.00089.x
  • Harder A, Wildgruber R, Nawrocki A, Fey SJ, Larsen PM, Görg A (1999) Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20:826–829. doi:10.1002/(SICI)1522-2683(19990101)20:4/5\826:AID-ELPS826[3.0.CO;2-A
  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203. doi:10.1016/0005-2728(96)00022-9
  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Mol Plant Physiol 51:463–499. doi:10.1146/annurev.arplant.51.1.463
  • Hou FY, Huang J, Yu SL, Zhang HS (2007) The 6-phosphogluconate dehydrogenase genes are responsive to abiotic stresses in rice. J Integr Plant Biol 49:655–663. doi:10.1111/j.1744-7909.2007.00460.x
  • Howarth CJ, Ougham HJ (1993) Gene expression under temperature stress. N Phytol 125:1–26
  • Huang J, Zhang H, Wang J, Yang J (2003) Molecular cloning and characterization of rice 6-phosphogluconate dehydrogenase gene that is up-regulated by salt stress. Mol Biol Rep 30:223–227. doi:10.1023/A:1026392422995
  • Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J Exp Bot 56:3041–3049. doi:10.1111/j.1469-8137.1993.tb03862.x
  • Igamberdiev AU, Bykowa NV, Ens W, Hill RD (2004) Dihydrolipoamide dehydrogenase from porcine heart catalyzes NADH-dependent scavenging of nitric oxide. FEBS Lett 568:146–150. doi:10.1016/j.febslet.2004.05.024
  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403. doi:10.1146/annurev.arplant.47.1.377
  • Jahn T, Fuglsang AT, Olsson A, Brüntrup IM, Collinge DB, Volkmann D, Sommarin M, Palmgren MG, Larsson C (1997) The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H+-ATPase. Plant Cell 9:1805–1814. doi:10.1105/tpc.9.10.1805
  • Jarillo JA, Leyva A, Salinas J, Martinez-Zapater JM (1993) Low temperature induces the accumulation of alcohol dehydrogenase mRNA in Arabidopsis thaliana, a chilling-tolerant plant. Plant Physiol 101:833–837. doi:10.1104/pp.101.3.833
  • Kalinski A, Rowley DL, Loer DS, Foley C, Buta G, Herman EM (1995) Binding-protein expression is subject to temporal, developmental and stress-induced regulation in terminally differentiated soybean organs. Planta 195:611–621. doi:10.1007/BF00195722
  • Kato-Noguchi H (2000a) Induction of alcohol dehydrogenase by plant hormones in alfalfa seedlings. Plant Growth Regul 30:1–3. doi:10.1023/A:1006253615894
  • Kato-Noguchi H (2000b) Osmotic stress increase alcohol dehydrogenase activity in maize seedlings. Biol Plant 43:621–624. doi:10.1023/A:1002864318871
  • Kawaguchi R, Girke T, Bray EA, Bailey-Serres J (2004) Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J 38:823–839. doi:10.1111/j.1365-313X.2004.02090.x
  • Kerkeb L, Venema K, Donaire JP, Rodriguez-Rosales MP (2002) Enhanced H+/ATP coupling ratio of H+-ATPase and increased 14-3-3 protein content in plasma membrane of tomato cells upon osmotic shock. Physiol Plant 116:37–41. doi:10.1034/j.1399-3054.2002.1160105.x
  • Kirch HH, Vera-Estrella R, Golldack D, Quigley F, Michalowski CB, Barkla BJ, Bohnert HJ (2000) Expression of water channel proteins in Mesembryanthemum crystallinum. Plant Physiol 123:111–124. doi:10.1104/pp.123.1.111
  • Kmieć B, Drynda R, Wołoszyńska M (2005) Molekularne podstawy odpowiedzi roślin na niską temperaturę. Biotechnologia 3:184–200
  • Kuniga T (2004) Phytoalexin protects plants. Foods Food Ingred J Jpn 209:1117–1127
  • Liu Q, Zhang Y, Chen SY (2000) Plant protein kinase genes induced by drought, high salinity and cold stress. Chin Sci Bull 45:1153–1157
  • Liu CHJ, Deavours BE, Richard SB, Ferrer JL, Blount JW, Huhman D, Dixon RA, Noel JP (2006) Structural basis for dual functionality of isoflavonoid O-methyltransferases in the evolution of plant defense responses. Plant Cell 18:3656–3669. doi:10.1105/tpc.106.041376
  • Ludevid D, Höfte H, Himelblau E, Chrispeels MJ (1992) The expression pattern of the tonoplast intrinsic protein γ-TIP in Arabidopsis thaliana is correlated with cell enlargement. Plant Physiol 100:1633–1639. doi:10.1104/pp.100.4.1633
  • Martre P, Morillon R, Barrieu F, North GB, Nobel PN, Chrispeels MJ (2002) Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol 130:2101–2110. doi:10.1104/pp.009019
  • Mathesius U, Keijzers G, Natera SH, Weinman JJ, Djordjevic MA, Rolfe BG (2001) Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1:1424–1440. doi:10.1002/1615-9861(200111)1:11\1424
  • McAlister L, Holland MJ (1985) Differential expression of the three yeast glyceraldehydes-3-phosphate dehydrogenase genes. J Biol Chem 260:15019–15027
  • McDowell JM, An YQ, Huang S, McKinney EC, Meagher RB (1996) The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissue and responds to several external stimuli. Plant Physiol 111:699–711. doi:10.1104/pp.111.3.699
  • Mert-Türk F (2002) Phytoalexins: defence or just a response to stress? J Cell Mol Biol 1:1–6
  • Morre DJ, Navas P, Penel C, Castillo FJ (1986) Auxin-stimulated NADH oxidase (semidehydroascorbate reductase) of soybean plasma membrane: role in acidification of cytoplasm. Protoplasma 133:195–197. doi:10.1007/BF01304635
  • Murillo-Amador B, López-Aguilar R, Kaya C, Larrinaga-Mayoral J, Flores-Hernández A (2002) Comparative effects of NaCl and polyethylene glycol on germination, emergence and seedling growth of cowpea. J Agron Crop Sci 188:235–247. doi:10.1046/j.1439-037X.2002.00563.x
  • Murray DR (1979) A storage role for albumins in pea cotyledons. Plant Cell Environ 2:221–226. doi:10.1111/j.1365-3040.1979.tb00073.x
  • Pantopoulos K, Mueller S, Atzberger A, Ansorge W, Stremmel W, Hentze MW (1997) Differences in the regulation of iron regulatory protein-1 (IRP-1) by extra-and intracellular oxidative stress. J Biol Chem 272:9802–9808. doi:10.1074/jbc.272.15.9802
  • Pappin DJC, Hojrup P, Bleasby AJ (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3:327–332. doi:10.1016/0960-9822(93)90195-T
  • Petit JM, Briat JF, Lobreáux S (2001) Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochem J 359:575–582. doi:10.1042/0264-6021:3590575
  • Popova OV, Popova TN, Izmailov SF (2001) Some features of NADP-dependent isocitrate dehydrogenase functioning in pea leaves upon exposure to salt stress. Biol Bull 28:134–138. doi:10.1023/A:1009406830497
  • Postel SL (2000) Entering an era of water scarcity. Ecol Appl 10:941–948. doi: 10.1890/1051-0761(2000)010[0941:EAEOWS]2.0.CO;2
  • Preisig CL, Matthews DE, VanEtten HD (1989) Purification and characterization of S-adenosyl-L-methionine:6a-hydroxymaackiain 3-O-methyltransferase from Pisum sativum. Plant Physiol 91:559–566
  • Ricard B, Rivoal J, Pradet A (1989) Rice cytosolic glyceraldehyde 3-phosphate dehydrogenase contains two subunits differentially regulated by anaerobiosis. Plant Mol Biol 12:131–139. doi:10.1007/BF00020498
  • Schiltz S, Gallardo K, Huart M, Negroni L, Sommerer N, Burstin J (2004) Proteome reference maps of vegetative tissues in pea. An investigation of nitrogen mobilization from leaves during seed filling. Plant Physiol 135:2241–2260. doi:10.1104/pp.104.041947
  • Schröder G, Eichel J, Breinig S, Schröder J (1997) Three differentially expressed S-adenosylmethionine synthetase from Catharanthus roseus: molecular and functional characterization. Plant Mol Biol 33:211–222. doi:10.1023/A:1005711720930
  • Shakirova FM, Bezrukova MV, Aval’baev AM, Fatkhutdinova RA (2003) Control mechanisms of lectin accumulation in wheat seedlings under salinity. Russ J. Plant Physiol 50:301–304. doi:10.1016/S0168-9452(02)00415-6
  • Shanko AV, Mesenko MM, Klychnikov OI, Nosov AV, Ivanov VB (2003) Proton pumping in growing part of maize root: its correlation with 14-3-3 protein content and changes in response to osmotic stress. Biochemistry 68:1320–1326. doi:10.1023/B:BIRY.0000011653.46422.c3
  • Shao HB, Liang ZS, Shao MA (2005) Molecular mechanisms of higher plant adaptation to environment. Acta Ecol Sin 257:1772–1781
  • Shohael AM, Ali MB, Yu KW, Hahn EJ, Paek KJ (2006) Effect of temperature on secondary metabolites production and antioxidant enzyme activities in Eleutherococcus senticosus somatic embryos. Plant Cell Tissue Organ Cult 85:219–228. doi:10.1007/s11240-005-9075-x
  • Singh BN, Mishra RN, Agarwal PK, Goswami M, Nair S, Sopory SK, Reddy MK (2004) A pea chloroplast translation elongation factor that is regulated by abiotic factors. Biochem Biophys Res Commun 320:523–530. doi:10.1016/j.bbrc.2004.05.192
  • Smart LB, Moskal WA, Cameron KD, Bennett AB (2001) MIP genes are down-regulated under drought stress in Nicotiana glauca. Plant Cell Physiol 42:686–693. doi:10.1093/pcp/pce085
  • Soylu S, Bennett MH, Mansfield JW (2002) Induction of phytoalexin accumulation in broad bean (Vicia faba L.) cotyledons following treatments with biotic and abiotic elicitors. Turk J Agric For 26:343–348
  • Starck Z (2002) Wpływm stresów abiotycznych na plonowanie roślin. In: Górecki RJ, Grzesiuk S (eds) Fizjologia plonowania roślin. UWM, Olsztyn, pp 447–486
  • Sweigard JA, Matthews DE, VanEtten HD (1986) Synthesis of the phytoalexin pisatin by a methyltransferase from pea. Plant Physiol 80:277–279. doi:10.1104/pp.80.1.277
  • Swenson GR, Patino MM, Beck MM, Gaffield L, Walden WE (1991) Characteristics of the interaction of the ferritin repressor protein with the iron-responsive element. Biol Met 4:48–55. doi:10.1007/BF01135557
  • Taylor IB, Burbidge A, Thompson AJ (2000) Control of abscisic acid synthesis. J Exp Bot 51:1563–1575. doi:10.1093/jexbot/51.350.1563
  • Urbano G, Lopez-Jurado M, Frejnagel S, Gomez-Villalva E, Porres JM, Frias J, Vidal-Valverde C, Aranda P (2005) Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition 21:230–239. doi:10.1016/j.nut.2004.04.025
  • Van Der Mescht A, De Ronde JA, Rossouw FT (1998) Cu/Zn superoxide dismutase, glutathione reductase and ascorbate peroxidase levels during drought stress in potato. S Afr J Sci 94:496–499
  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329. doi:10.1104/pp.104.044891
  • Vidal-Valverde C, Frias J, Hernandez A, Martin-Alvarez PJ, Sierra I, Rodriguez C, Blazquez I, Vicente G (2003) Assessment of nutritional compounds and antinutritional factors in pea (Pisum sativum L.) seeds. J Sci Food Agr 83:298–306. doi:10.1002/jsfa.1309
  • Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA (2003) Can we improve the nutritional quality of legume seeds? Plant Physiol 131:886–891. doi:10.1104/pp.102.017665
  • Wu Q, Preisig CL, VanEtten HD (1997) Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal strep for the synthesis of the phytoalexin pisatin in Pisum sativum. Plant Mol Biol 35:551–560. doi:10.1023/A:1005836508844
  • Xiong L, Schumaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell supplement:S165–S183. doi:10.1105/tpc.000596
  • Xu N, Bewley JD (1991) Sensitivity to abscisic acid and osmoticum changes during embryogenesis of alfalfa (Medicago sativa). J Exp Bot 42:821–826. doi:10.1093/jxb/42.6.821
  • Yamada S, Komori T, Hashimoto A, Kuwata S, Imaseki H, Kubo T (2000) Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress. Plant Sci 154:61–69. doi:10.1016/S0168-9452(00)00188-6
  • Yan J, He C, Wang J, Mao Z, Holaday SA, Allen RD, Zhang H (2004) Overexpression of the Arabidopsis 14-3-3 protein GF14λ in cotton leads to ‘‘stay-green’’ phenotype and improves stress tolerance under moderate drought conditions. Plant Cell Physiol 5:1007–1014
  • Zhao HC, Li GJ, Wang JB (2005) The accumulation of phytoalexin in cucumber plant after stress. Colloids Surf B Biointerfaces 43:187–193. doi:10.1016/j.colsurfb.2005.03.018
  • Żuk M, Prescha A, Kępczyński J, Szopa J (2003) ADP ribosylation factor regulates metabolism and antioxidant capacity of transgenic potato tubers. J Agric Food Chem 51:288–294. doi:10.1021/jf020779r

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.