Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 2 |

Tytuł artykułu

Source identification of emission sources for hydrocarbon with backward trajectory model and statistical methods


Warianty tytułu

Języki publikacji



Several statistical techniques were combined with a backward trajectory model and emission inventory to locate sources of total hydrocarbon (THC) emissions and to calculate contributed ratios of emission sources. Emission attraction, a novel method of combining emission inventory and residence time, was introduced to confirm respective contributions of specific emission sources with detailed meteorological and emissions data. This research combined four techniques – residence time, conditional probability function, emission inventory and principal component analysis – to locate possible regions and sources on severe surface ozone episodes and non-episode days. Temporal and spatial interpolation manners were performed on surface and rawinsonde meteorological stations, and complex terrain effects were corrected with a variation-kinematic model. Emission inventory of THC and maximum incremental reactivity (MIR) scales were utilized to calculate the accounted contributions of distinct emission sources from various jurisdictions. Conditional probability function combined with emission attraction could reveal potential regions that emitted high THC emissions and MIR scales during ozone episodes. The ratios of emission attraction for 11-h backward trajectories indicated that 68% of THC emissions and 74% of MIR scales were from the target air-quality basin during non-episode days; the respective figures during ozone episodes were 81% and 75%. The combination of emission attraction and conditional probability function could identify specific locations that cause severe ground ozone pollution and provide more detailed information about source regions compared to traditional RTA and PSCF approaches.

Słowa kluczowe








Opis fizyczny



  • Department of Risk Management and Insurance, Ming Chuan University, Taipei, Taiwan


  • 1. VIJAYARAGHAVAN K., CHO S., MORRIS R., SPINK D., JUNG J., PAULS R., DUFFETT K. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the alberta oil sands region: using present and future emission scenarios. Atmos. Environ. 141, 209, 2016.
  • 2. CHING J., MAJEED M.A. An approach to characterize within-grid concentration variability in air quality models. Atmos. Environ. 49, 348, 2012.
  • 3. FOLEY K.M., NAPELENOK S.L., JANG C., PHILLIPS S., HUBBELL B.J., FULCHER C.M. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types. Atmos. Environ. 98, 283, 2014.
  • 4. FOLEY K.M., HOGREFE C., POULIOT G., POSSIEL N., ROSELLE S.J., SIMON H., TIMIN B. Dynamic evaluation of CMAQ part I: Separating the effects of changing emissions and changing meteorology on ozone levels between 2002 and 2005 in the eastern US. Atmos. Environ. 103, 247, 2015a.
  • 5. FOLEY K.M., DOLWICK P., HOGREFE C., SIMON H., TIMIN B., POSSIEL N. Dynamic evaluation of CMAQ part II: Evaluation of relative response factor metrics for ozone attainment demonstrations. Atmos. Environ. 103, 188, 2015b.
  • 6. PASCHALIDOU A.K., KASSOMENOS P., KARANIKOLA P. Disaggregating the contribution of local dispersion and long-range transport to the high PM₁₀ values measured in a Mediterranean urban environment. Sci. Total Environ. 527-528, 119, 2015.
  • 7. PIRES J.C.M., ALVIM–FERRAZ M.C.M, PEREIRA M.C., MARTINS F.G. Prediction of PM₁₀ concentrations through multi-gene genetic programming. Atmos. Pollut. Res. 1 (4), 305, 2010.
  • 8. CHENG H.R., SAUNDERS S.M., GUO H., LOUIE P.K.K., JIANG F. Photochemical trajectory modeling of ozone concentrations in Hong Kong. Environ. Pollut. 180, 101, 2013a.
  • 9. LING Z.H., GUO H., ZHENG J.Y., LOUIE P.K.K., CHENG H.R., JIANG F. , CHEUNG K., WONG L.C., FENG X.Q. Establishing a conceptual model for photochemical ozone pollution in subtropical Hong Kong. Atmos. Environ. 76, 208, 2013.
  • 10. LUNA A.S., PAREDES M.L.L., de OLIVEIRA G.C.G., CORREA S.M. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmos. Environ. 98, 98, 2014.
  • 11. LI J., YANG W., WANG Z., CHEN H., HU B., LI J., SUN Y., FU P., ZHANG Y. Modeling study of surface ozone sourcereceptor relationships in East Asia. Atmos. Res., 167 (1), 77, 2016.
  • 12. RIUTTANEN L., HULKKONEN M., MASO M.D., JUNNINEN H., KULMALA M. Trajectory analysis of atmospheric transport of fine particles, SO₂, NOₓ and O₃ to the SMEAR II station in Finland in 1996-2008. Atmos. Chem. Phys. 13 (4), 2153, 2013.
  • 13. OH H.-R., HO C.-H., KIM J., CHEN D., LEE S., CHOI Y.- S., CHANG L.-S., SONG C.-K. Long-range transport of air pollutants originating in China: A possible major cause of multi-day high-PM₁₀ episodes during cold season in Seoul, Korea. Atmos. Environ. 109, 23, 2015.
  • 14. SCHWARZ J., CUSACK M., KARBAN J., CHALUPNÍČKOVÁ E., HAVRÁNEK V., SMOLÍK J., ŽDÍMAL V. PM₂.₅ chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 176-177, 108, 2016.
  • 15. MAKRA L., MATYASOVSZKY I., GUBA Z., KARATZAS K., ANTTILA P. Monitoring the long-range transport effects on urban PM₁₀ levels using 3D clusters of backward trajectories, Atmos. Environ. 45, 2630, 2011.
  • 16. 16.ZHU L., HUANG X., SHI H., CAI X., SONG Y. Transport pathways and potential sources of PM₁₀ in Beijing. Atmos. Environ. 45, 594, 2011.
  • 17. 17.KONG X., HE W., QIN N., HE Q., YANG B., OUYANG H., WANG Q., XU F. Comparison of transport pathways and potential sources of PM₁₀ in two cities around a large Chinese lake using the modified trajectory analysis. Atmos. Res. 122, 284, 2013.
  • 18. ASHBAUGH L.L., MALM W.C., SADEH W.Z. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmos. Environ. 19, 1263, 1985.
  • 19. CHALBOT M.-C., MCELROY B., KAVOURAS I.G. Sources, trends and regional impacts of fine particulate matter in southern Mississippi valley: significance of emissions from sources in the gulf of Mexico coast. Atmos. Chem. Phys. 13 (7), 3721, 2013.
  • 20. Comrie A.C. Tracking Ozone: Air mass trajectories and pollutant source regions influencing ozone in Pennsyvania Forests. Ann. Assoc. Am. Geogr. 84 (4), 635, 1994.
  • 21. DIMITRIOU K., KASSOMENOS P. Decomposing the profile of pm in two low polluted German cities – mapping of air mass residence time, focusing on potential long range transport impacts. Environ. Pollut. 190, 91, 2014.
  • 22. LUCEY D., HADJIISKI L., HOPKE P.K., SCUDLARK J.R., Church T. Identification of sources of pollutants in precipitation measured at the mid-Atlantic US coast using potential source contribution function. Atmos. Environ. 35, 3979, 2001.
  • 23. BRERETON C.A., JOHNSON M.R. Identifying sources of fugitive emissions in industrial facilities using trajectory statistical methods. Atmos. Environ. 51, 46, 2012.
  • 24. KARNAE S., JOHN K. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of south Texas. Atmos. Environ. 45, 3769, 2011.
  • 25. WANG Z., WU T., SHI G., FU X., TIAN Y., FENG Y., WU X., WU G., BAI Z., ZHANG W. Potential source analysis for PM₁₀ and PM₂.₅ in autumn in a Northern City in China. Aerosol Air Qual. Res. 12, 39, 2012.
  • 26. Wang L., Liu Z., Sun Y., Ji D., Wang Y. Long-range transport and regional sources of PM₂.₅ in Beijing based on long-term observations from 2005 to 2010. Atmos. Res. 157, 37, 2015.
  • 27. DI GILIO A., DE GENNARO G., DAMBRUOSO P., VENTRELLA G. An integrated approach using high time-resolved tools to study the origin of aerosols. Sci. Total. Environ. 530-531, 28, 2015.
  • 28. CHOI E., CHOI K., YI S.M. Non-methane hydrocarbons in the atmosphere of a Metropolitan City and a background site in South Korea: Sources and health risk potentials. Atmos. Environ. 45, 7563, 2011.
  • 29. Kabashnikov V.P., Chaikovsky A.P., Tucsera T.L., Metelskaya N.S. Estimated accuracy of three common trajectory statistical methods. Atmos. Environ. 45, 5425, 2011.
  • 30. DIMITRIOU K., REMOUNDAKI E., MANTAS E., KASSOMENOS P. Spatial distribution of source areas of PM₂.₅ by Concentration Weighted Trajectory (CWT) model applied in PM₂.₅ concentration and composition data. Atmos. Environ. 116, 138, 2015.
  • 31. LI M., HUANG X., ZHU L., LI J, SONG Y., CAI X., XIE S. Analysis of the transport pathways and potential sources of PM₁₀ in Shanghai based on three methods. Sci.Total Environ. 414, 525, 2012.
  • 32. WANG F., CHEN Y., MENG X., FU J., WANG B. The contribution of anthropogenic sources to the aerosols over east China sea. Atmos. Environ. 127, 22, 2016.
  • 33. BEGUM B.A., BISWAS S.K., MARKWITZ A., HOPKE P.K. Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Quality Res. 10, 345, 2010.
  • 34. Vestenius M., Leppänen S., Anttila P., Kyllönen K., Hatakka J., Hellén H., Hyvärinen A.P., Hakola H. Background concentrations and source apportionment of polycyclic aromatic hydrocarbons in south-eastern Finland. Atmos. Environ. 45, 3391, 2011.
  • 35. CHOI J.K., HEO J.B., BAN S.J., YI S.M., ZOH K.D. Source apportionment of PM₂.₅ at the coastal area in Korea. Sci. Total Environ. 447, 370, 2013.
  • 36. STOHL A. Trajectory statistics-a new method to establish source-receptor relationships of air pollutants and its application to the transport of particulate sulfate in Europe. Atmos. Environ. 30, 579, 1996.
  • 37. SCHEIFINGER H., KAISER A. Validation of trajectory statistical methods. Atmos. Environ. 39, 8846, 2007.
  • 38. SALVADOR P., ARTINANO B., PIO C., AFONSO J., LEGRAND M., PUXBAUM H., HAMMER S. Evaluation of aerosol sources at European high altitude background sites with trajectory statistical methods. Atmos. Environ. 44, 2316, 2010.
  • 39. CHENG I., ZHANG L., BLANCHARD P., DALZIEL J., TORDON R. Concentration-weighted trajectory approach to identifying potential sources of speciated atmospheric mercury at an urban coastal site in Nova Scotia, Canada. Atmos. Chem. Phys. 13, 6031, 2013b.
  • 40. SQUIZZATO S., MASIOL M. Application of meteorology-based methods to determine local and external contributions to particulate matter pollution: A case study in Venice (Italy). Atmos. Environ. 119, 69, 2015.
  • 41. JEONG U., KIM J., LEE H., JUNG J., KIM Y. J., SONG C.H., KOO J.-H. Estimation of the contributions of long range transported aerosol in East Asia to carbonaceous aerosol and PM concentrations in Seoul, Korea using highly time resolved measurements: a PSCF model approach. J. Environ. Monit. 13 (7), 1905, 2011.
  • 42. ZHAO M., HUANG Z., QIAO T., ZHANG Y., XIU G., YU J. Chemical characterization, the transport pathways and potential sources of PM₂.₅ in Shanghai: Seasonal variations. Atmos. Res. 158-159, 66, 2015.
  • 43. Carter W.P.L. Updated maximum incremental reactivity and hydrocarbon bin reactivities for regulatory applications. California Air Resources Board Contract 07-339, 2010.
  • 44. TAIWAN ENVIRONMENTAL PROTECTION ADMINISTRATION. Taiwan Emission Database System (version 7.1), 2011.
  • 45. CHEN T.F., CHANG K.H. Formulating the relationship between ozone pollution features and the transition value of photochemical indicators. Atmos. Environ. 40, 1816, 2006.
  • 46. YU T.Y., CHANG L.F.W. Selection of the scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis. Atmos. Environ. 34, 4499, 2000.
  • 47. TARTAKOVSKY D., STERN E., BRODAY D.M. Evaluation of modeled wind field for dispersion modeling. Atmos. Res. 166, 150, 2015.
  • 48. YU T.Y., LIN T.Y., CHANG L.F.W.,Estimating air pollutant emission factors from open burning of rice straw by the residual mass method. Atmos. Environ. 54, 42, 2012.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.