Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 30 | 5 |
Tytuł artykułu

Responses of MxPPO overexpressing transgenic tall fescue plants to two diphenyl-ether herbicides, oxyfluorfen and acifluorfen

Treść / Zawartość
Warianty tytułu
Języki publikacji
We generated transgenic tall fescue (Festuca arundinacea Schreb. cv. Kentucky-31) plants harboring a synthetic Myxococcus xanthus protoporphyrinogen oxidase (MxPPO) gene through Agrobacterium-mediated gene transfer. Successful integration of the transgene into the genome of transgenic plants confirmed by polymerase chain reaction (PCR) and Southern blot analysis, and the functional expression of the MxPPO gene at the mRNA level in transgenic lines was validated by Northern blot analysis. Responses of transgenic and non-transgenic tall fescue plants to diphenyl-ether herbicides such as oxyfluorfen and acifluorfen have been evaluated in respect of various physiological and biochemical parameters. Differential responses were observed in chlorophyll content, in vivo H2O2 deposition and lipid peroxidation in both transgenic and non-transgenic plants exposed to oxyfluorfen or acifluorfen. Isozyme profiles of four antioxidantenzymes, including peroxidase (POD), catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX), were also investigated in transgenic and nontransgenic plants using native PAGE analysis. Compared to the transgenic lines, higher staining activities of the examined antioxidant-enzymes observed in non-transgenic plants subjected to 100 μM of oxyfluorfen or acifluorfen suggests that non-transgenic plants are unable to prevent the photodynamic induced oxidative stress caused by herbicides. In addition, both transgenic and non-transgenic plants exposed to oxyfluorfen exhibited proportionally increased band-staining patterns in contrast to acifluorfen,which suggests that oxyfluorfen has relatively greater or more rapid effects on leaves than acifluorfen.
Słowa kluczowe
Opis fizyczny
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Grassland and Forage Crops Division, National Institute of Animal Sciences, 330-801 Cheonan, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Korea Research Institute of Chemical Technology, 305-600 Daejeon, South Korea
  • Biological Function Research Team, Korea Research Institute of Chemical Technology, 305-600 Daejeon, South Korea
  • Department of Molecular Biotechnology (BK21 Program), Biotechnology Research Institute, Chonnam National University, 500-757 Gwangju, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Division of Applied Life Sciences (BK21 Program), IALS, Gyeongsang National University, 660-701 Jinju, South Korea
  • Ahsan N, Yoon HS, Jo J (2005) Molecular cloning of a BcPGIP cDNA from Brassica campestris and its expression to several stresses. Plant Sci 169:1081–1089
  • Ahsan N, Lee DG, Lee SH, Kang KY, Bahk JD, Choi MS, Lee IJ, Renaut J, Lee BH (2007a) A comparative proteomic analysis of tomato leaves in response to waterlogging stress. Physiol Plant 131:555–570
  • Ahsan N, Lee SH, Lee DG, Anisuzzaman M, Alam MF, Yoon HS, Choi MS, Yang JK, Lee BH (2007b) The effects of wounding type, preculture, infection method and cocultivation temperature on the Agrobacterium-mediated gene transfer in tomatoes. Ann Appl Biol 151:363–372
  • Armbruster BL, Clark RD, Sharp CR, Dill GM (1993) Herbicide action of nirtophenyl pyrazole Ether Mon 12800: immunolocalization, ultrastructural, and physiological studies. Pestic Biochem Physiol 47:21–35
  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287
  • Birchfield NB, Casida JE (1997) Protoporphyrinogen oxidase of mouse and maize: target site selectivity and thiol effects on peroxidizing herbicide action. Pestic Biochem Physiol 57:36–43
  • Boger P (1984) Multiple modes of action of diphenyl ethers. Z Naturforsch 39c:468–475
  • Caruso C, Chilosi G, Caporale C, Leonardi L, Bertini L, Magro P, Buonocore V (1999) Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Sci 140:107–120
  • Choi KW, Han O, Lee HJ, Yun YC, Moon YH, Kim M, Kuk YI, Han SU, Guh JO (1998) Generation of resistance to the diphenyl ether herbicide, oxyfluorfen, via expression of the Bacillus subtilis protoporphyrionogen oxidase gene in transgenic tobacco plants. Biosci Biotechnol Biochem 62:558–560
  • De Prado JL, De Prado AR, Shimabukuro RH (1999) The effect of diclofop on membrane potential, ethylene induction, and herbicide phytoxicity in resistant and susceptible biotypes of grasses. Pestic Biochem Physiol 63:1–14
  • Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia millii hyperhydric shoots. Environ Exp Bot 58:93–99
  • Eyidoǧan F, Öktem HA, Yücel M (2003) Superoxide dismutase activity in salt stresses wheat seedlings. Acta Physiol Plant 25:263–269
  • Fadayomi O, Warren GF (1976) The light requirement for herbicidal activity of diphenyl ethers. Weed Sci 24:598–604
  • Feng Z, Jin-Kui G, Ying-Li Y, Wen-Liang H, Li-Xin Z (2004) Changes in the pattern of the antioxidant enzymes in wheat exposed to water deficit and rewatering. Acta Physiol Plant 26:345–352
  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92:696–717
  • Geoffroy L, Teisseire H, Couderchet M, Vernet G (2002) Effect of oxyfluorfen and diuron alone and in mixture on antioxidative enzymes of Scenedesmus obliquus. Pestic Biochem Physiol 72:178–185
  • Gullner G, Dodge AD (2000) Accumulation of glutathione in pea leaf discs exposed to the photooxidative herbicides acifluorfen and 5- aminolevulinic acid. J Plant Physiol 156:111–117
  • Ha SB, Lee SB, Lee DE, Guh JO, Back K (2003) Transgenic rice plants expressing Bacillus protoporphyrinogen oxidase gene show low herbicide oxyfluorfen resistance. Biol Plant 47:277–280
  • Health RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I: Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198
  • Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gene Genet 163:181–187
  • Izzo NF, Quartacci MF, Sgherri CLM (1997) Desiccation tolerance in higher plants related to free radical defences. Phyton Ann Rei Bot 37:203–214
  • Jacobs JM, Jacobs NJ, Sherman TD, Duke SO (1991) Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. Plant Physiol 97:197–203
  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat Bot 12:345–354
  • Jung S, Back K (2005) Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase. Plant Physiol Biochem 43:423–430
  • Jung S, Lee Y, Yang K, Lee SB, Jang SM, Ha B, Back K (2004) Duel targeting of Myxococcus xanthus protoporphyrinogen oxidase into chloroplast and mitochondria and high level oxyfluorfen resistance. Plant Cell Environ 27:1436–1446
  • Kenyon WH, Duke SO (1985) Effects of acifluorfen on endogenous antioxidants and protective enzymes in cucumber (Cucumis sativus l.) cotyledons. Plant Physiol 79:862–866
  • Kuk YI, Lee HJ, Chung JS, Kim KM, Lee SB, Ha SB, Back K, Guh JO (2005) Expression of a Bacillus subtilis protoporphyrinogen oxidase gene in rice plants reduces sensitivity to peroxidizing herbicides. Biol Plant 49:577–583
  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685
  • Lagana A, Fago G, Fasciani L, Marino A, Mosso M (2000) Determination of diphenyl ether herbicides and metabolites in natural waters using high-performance liquide chromatography with diode array tandem mass spectrometric detection. Anal Chem Acta 414:79–94
  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745
  • Lee SH, Lee DG, Woo HS, Lee BH (2004a) Development of transgenic tall fescue plants from mature seed-derived callus via Agrobacterium-mediated transformation. Asian Aust J Anim Sci 17:1390–1394
  • Lee Y, Jung S, Back K (2004b) Expression of human protoporphyrinogen oxidase in transgenic rice induces both a photodynamic response and oxyfluorfen resistance. Pestic Biochem Physiol 80:65–74
  • Lee SH, Lee DG, Woo HS, Lee KW, Kim DH, Kwak SS, Kim JS, Kim HG, Ahsan N, Choi MS, Yang JK, Lee BH (2006) Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Sci 171:408–414
  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638
  • Lichtenthaler HH (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382
  • Lowry OH, Rosebrough JN, Farr AL, Randall RJ (1951) Protein measurements with the Folin reagent. J Biol Chem 193:265–275
  • Manac’h N, Kuntz M (1999) Stress induction of a nuclear gene encoding a plastid protein is mediated by photo-oxidative events: role of reactive oxygen species and the ascorbate/glutathione pathway. Plant Physiol Biochem 37:859–868
  • Matringe M, Camadro JM, Labbe P, Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260:231–235
  • Matringe M, Camadro JM, Block MA, Joyard J, Scalla R, Labbe P, Douce R (1992) Localization within chloroplasts of protoporphyrinogen oxidase, the target enzyme for diphenyl ether-like herbicides. J Biol Chem 267:4646–4651
  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039
  • Nicolaus B, Johansen JN, Boger P (1995) Binding affinities of peroxidizing herbicides to protoporphyrinogen oxidase from corn. Pestic Biochem Physiol 51:20–29
  • Orr GL, Hess FD (1982) Mechanism of action of the diphenyl ether herbicide acifluorfen-methyl in excised cucumber (Cucumis sativus L.) cotyledons light activation and the subsequent formation of lipophilic free radicals. Plant Physiol 69:502–507
  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B- and ozoneinduced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 110:125–136
  • Rio B, Guinard-Flament J, Boucher A, Parent-Massin D (1998) Effects of diphenyl-ether herbicides on human erythropoiesis in vitro. Toxicol Lett 95:142–143
  • Sherman TD, Becerril JM, Matsumoto H, Duke MV, Jacobs JM, Jacobs NJ, Duke SO (1991) Physiological basis for differential sensitivities of plant species to protoporphyrinogen oxidaseinhibiting herbicides. Plant Physiol 97:280–287
  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444
  • Tsang EWT, Bowler C, Herouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inze D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792
  • Upham BL, Hatzios KK (1987) Potential involvement of alkoxyl and hydroxyl radicals in the peroxidative action of oxyfluorfen. Pesticide Biochem Physiol 28(2):248–256
  • Wakabayashi K, Böger P (1999) General physiological characteristics and mode of action of peroxidizing herbicides. In: Böger P, Wakabayashi K (eds) Peroxidising herbicides. Springer, Berlin, pp 163–190
  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305
  • Yang K, Jung S, Lee Y, Back K (2006) Modifying Myxococcus xanthus protoporphyrinogen oxidase to plant codon usage and high level of oxyfluorfen resistance in transgenic rice. Pestic Biochem Physiol 86:186–194
Rekord w opracowaniu
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.