PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 26 | 4 |

Tytuł artykułu

Analysis of the project of innovative floating turbine

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The design of a floating, innovative device for river water aeration and conversion of mechanical energy to electrical energy required the analysis of a number of geometrical and dynamic features. Such an analysis may be carried out on the basis of existing methods of numerical fluid mechanics. Models of pressures, forces and torques characteristic for the conversion of watercourse energy were developed for two basic concepts of innovation. These pressures, forces and torques were calculated, designed, and experimentally determined for the variable geometric form and dimensions of the designed working elements of the innovative roller-blade turbine rotor

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

4

Opis fizyczny

p.124-133,fig.,ref.

Twórcy

  • University of Science and Technology, Al.S.Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • University of Babylon, Faculty of Materials Engineering, Najaf Road, 14km from the center of Hilla, P.O.Box 4, Babylon Hilla, Iraq
  • University of Science and Technology, Al.S.Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • University of Science and Technology, Al.S.Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • University of Science and Technology, Al.S.Kaliskiego 7, 85-796 Bydgoszcz, Poland
autor
  • Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland

Bibliografia

  • 1. Basumatary, M., Biswas, A., Misra, R.D.: CFD analysis of an innovative combined lift and drag (CLD) based modified Savonius water turbine. Energy Convers. Manag. 174, 72–87 (2018). https://doi.org/10.1016/j.enconman.2018.08.025.
  • 2. Sritram, P., Suntivarakorn, R.: Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water. Energy Procedia. 138, 646–650 (2017). https://doi.org/10.1016/ j.egypro.2017.10.181.
  • 3. Jiyun, D., Hongxing, Y., Zhicheng, S., Xiaodong, G.: Development of an inline vertical cross-flow turbine for hydropower harvesting in urban water supply pipes. Renew. Energy. 127, 386–397 (2018). https://doi.org/10.1016/ j.renene.2018.04.070.
  • 4. Viollet, P.-L.: From the water wheel to turbines and hydroelectricity. Technological evolution and revolutions. Comptes Rendus Mécanique. 345, 570–580 (2017). https:// doi.org/10.1016/j.crme.2017.05.016.
  • 5. Ferziger, J.H., Perić, M.: Computational methods for fluid dynamics. Springer, Berlin; New York (2002).
  • 6. Flizikowski, J., Topoliński, T., Opielak, M., Tomporowski, A., Mroziński, A.: Research and analysis of operating characteristics of energetic biomass mikronizer. Eksploat. Niezawodn. 17, 19–26 (2015).
  • 7. Tomporowski, A., Flizikowski, J.: Motion characteristics of a multi-disc grinder of biomass grain. Przem. Chem. 92, 498–503 (2013).
  • 8. Flizikowski, J.B., Kruszelnicka, W., Tomporowski, A., Mrozinski, A.: A study of operating parameters of a roller mill with a new design. AIP Conf. Proc. 2077, 020018 (2019). https://doi.org/10.1063/1.5091879.
  • 9. Tomporowski, A., Flizikowski, J., Kruszelnicka, W.: A new concept of roller-plate mills. Przem. Chem. 96, 1750–1755 (2017). https://doi.org/10.15199/62.2017.8.29.
  • 10. Du, J., Shen, Z., Yang, H.: Effects of different block designs on the performance of inline cross-flow turbines in urban water mains. Appl. Energy. 228, 97–107 (2018). https:// doi.org/10.1016/j.apenergy.2018.06.079.
  • 11. Jiyun, D., Zhicheng, S., Hongxing, Y.: Performance enhancement of an inline cross-flow hydro turbine for power supply to water leakage monitoring system. Energy Procedia. 145, 363–367 (2018). https://doi.org/10.1016/j.egypro.2018.04.065.
  • 12. Kruszelnicka, W., Flizikowski, J., Tomporowski, A.: Automonitoring system of grainy biomass comminution technology. IOP Conf. Ser. Mater. Sci. Eng. 393, 012076 (2018). https:// doi.org/10.1088/1757-899X/393/1/012076.
  • 13. Tongphong, W., Saimek, S.: The Design and Development of an Oscillating Water Turbine. Energy Procedia. 52, 552–558 (2014). https://doi.org/10.1016/j.egypro.2014.07.109.
  • 14. Wang, J., Piechna, J., Müller, N.: A novel design of composite water turbine using CFD. J. Hydrodyn. Ser B. 24, 11–16 (2012). https://doi.org/10.1016/S1001-6058(11)60213-8.
  • 15. Tomporowski, A., Flizikowski, J., Kasner, R., Kruszelnicka, W.: Environmental Control of Wind Power Technology. Rocz. Ochr. Śr. 19, 694–714 (2017).
  • 16. Flaszyński, P.: Wyniki obliczeń przepływowych w następstwie obliczenia sił i momentów obrotowych uzyskiwanych dla założonych parametrów konstrukcyjnych projektowanej turbiny, (2011).
  • 17. Boxma, O., Zwart, B.: Fluid flow models in performance analysis. Comput. Commun. 131, 22–25 (2018). https:// doi.org/10.1016/j.comcom.2018.07.009.
  • 18. Tang, M., Yuan, L., He, S., Fu, T.: Simplified modeling of YPL fluid flow through a concentric elliptical annular pipe. J. Pet. Sci. Eng. 162, 225–232 (2018). https://doi.org/10.1016/ j.petrol.2017.12.030.
  • 19. Sondermann, C.N., Baptista, R.M., Bastos de Freitas Rachid, F., Bodstein, G.C.R.: Numerical simulation of non-isothermal two-phase flow in pipelines using a two-fluid model. J. Pet. Sci. Eng. 173, 298–314 (2019). https://doi.org/10.1016/ j.petrol.2018.10.018.
  • 20. Rasti, E., Talebi, F., Mazaheri, K.: A turbulent duct flow investigation of drag-reducing viscoelastic FENE-P fluids based on different low-Reynolds-number models. Phys. Stat. Mech. Its Appl. (2019). https://doi.org/10.1016/j.physa.2019.03.083.
  • 21. Spalart, P., Allmaras, S.: A one-equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (1992). https://doi.org/10.2514/6.1992-439.
  • 22. Launder, B., Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972).
  • 23. Launder, B.E., Sharma, B.I.: Application of the energydissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–137 (1974).
  • 24. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids Fluid Dyn. 4, 1510–1520 (1992). https://doi.org/10.1063/1.858424.
  • 25. Wilcox, D.C.: Turbulence Modeling for CFD. D C W Industries, La Cãnada, Calif (2006).
  • 26. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149.
  • 27. Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975). https://doi.org/10.1017/ S0022112075001814.
  • 28. Gavrilov, A.A., Rudyak, V.Y.: Reynolds-averaged modeling of turbulent flows of power-law fluids. J. Non-Newton. Fluid Mech. 227, 45–55 (2016). https://doi.org/10.1016/ j.jnnfm.2015.11.006.
  • 29. Fletcher, C.A.J.: Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and General Techniques. Springer-Verlag, NY (1991).
  • 30. Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics – 2nd Edition. Elsevier (2007).
  • 31. Tomporowski, A., Flizikowski, J., Wełnowski, J., Najzarek, Z., Topoliński, T., Kruszelnicka, W., Piasecka, I., Śmigiel, S.: Regeneration of rubber waste using an intelligent grinding system. Przem. Chem. 97, 1659–1665 (2018). https://doi. org/10.15199/62.2018.10.6.
  • 32. Rudnicki, J., Zadrag, R.: Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based on the Exhaust Gas Composition Testing. Pol. Marit. Res. 24, 203–212 (2017). https://doi.org/10.1515/pomr-2017-0040.
  • 33. Korczewski, Z., Rudnicki, J.: An Energy Approach to the Fatigue Life of Ship Propulsion Systems Marine 2015. In: Salvatore, F., Broglia, R., and Muscari, R. (eds.) VI International Conference on Computational Methods in Marine Engineering – The Conference Proceedings. pp. 490–501. Int Center Numerical Methods Engineering, 08034 Barcelona (2015).
  • 34. Flizikowski, J.: Apparatus for aerating water courses and disintegrating solid impurities contained in their water, http:// regserv.uprp.pl/register/application?number=P.308679, (1999).
  • 35. Green Tech Avenue: Micro Hydro Power Technology – 5kW WATER TURBINE, https://translate.google.com/ translate?hl=pl&sl=en&u=http://www.greentechavenue. com/wp-content/uploads/2011/Greentechavenue_micro_ hydro_power_solution.pdf&prev=search.
  • 36. Matulewicz, W.: Floating water – power plant. Przegląd Elektrotechniczny. 1, 279–283 (2015). https://doi.org/ 10.15199/48.2015.09.68.
  • 37. Dąbała, K., Krzemień, Z., Olszewski, A.: Micro hydropower station with a spiral turbine. Zesz. Probl. – Masz. Elektr. 129–133 (2009).
  • 38. Rangan, P.R., Karnyoto, A.S., Ambabunga, Y.A.M., Rambulangi, A.C.: Design of River Flow Floating Portable Micro-Hydro. Int. J. Eng. Tech. 4, 593–597 (2018).
  • 39. Nguyen, M.H., Jeong, H., Yang, C.: A study on flow fields and performance of water wheel turbine using experimental and numerical analyses. Sci. China Technol. Sci. 61, 464–474 (2018). https://doi.org/10.1007/s11431-017-9146-9.
  • 40. Akimoto, H., Tanaka, K., Uzawa, K.: A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents. Renew. Energy. 57, 283–288 (2013). https://doi.org/10.1016/ j.renene.2013.02.002

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a9b74d57-a604-4d18-8105-b03b342ea19a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.