PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |
Tytuł artykułu

Seasonal measurement of greenhouse gas concentrations and emissions along the longitudinal profile of a small stream

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to find out whether streams might be a major source of greenhouse gases to the atmosphere, our investigation sought to determine the total emissions of CH4, CO2, and N2O from the surface water of a small stream. Over a period of a year we used floating chambers to measure gas emissions along the longitudinal profile of Sitka Stream (Czech Republic). Additionally, we measured gas concentrations of surface and interstitial waters. We found that interstitial and surface waters were supersaturated by all monitored gases – especially by CH4 – and that the stream is a significant emitter of these greenhouse gases. The concentrations and the emission rates of all three gases were higher in the downstream part than upstream. In the case of CH4 the majority of total annual emissions (90%) was released from the most downstream section, representing only 1/5 of the stream’s total surface area (0.18 km2). The majority of CH4 and CO2 emissions were released during warmer periods of the year and the highest N2O emissions from Sitka were recorded during summer and winter. The total annual emissions of CH4, CO2, and N2O into the atmosphere from the water’s surface were estimated to be 0.6 t, 210 t, and 0.2 t, respectively. After conversion of the greenhouse gas emissions to CO2 equivalents using a calculation by IPCC, CO2 accounts for the majority of total annual emissions of greenhouse gases (70.1%), with the second being N2O (22.7%), and the last CH4 (7.2%) for a 100-year time horizon. This work brings worthwhile data of greenhouse gas emissions and concentrations from a small water stream based on seasonal measurements along the longitudinal profile.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
25
Numer
5
Opis fizyczny
p.2047-2056,fig.,ref.
Twórcy
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Slechtitelu 11, CZ-783 71 Olomouc, Czech Republic
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Slechtitelu 11, CZ-783 71 Olomouc, Czech Republic
autor
  • Department of Analytical Chemistry, Faculty of Science, Palacky University, Tr. 17. Listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Slechtitelu 11, CZ-783 71 Olomouc, Czech Republic
autor
  • Department of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Slechtitelu 11, CZ-783 71 Olomouc, Czech Republic
Bibliografia
  • 1. IPCC Summary for Policymakers. In: STOCKER T.F., QIN D., PLATTNER G.-K., TIGNOR M., ALLEN S.K., BOSCHUNG J., NAUELS A., XIA Y., BEX V., MIDGLEY P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of WGI to the 5AR of the IPCC. Cambridge University Press, 2013.
  • 2. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. Changes in Atmospheric Constituents and in Radiative Forcing. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (eds.) Climate Change 2007: The Physical Science Basis. Cambridge University Press, 2007.
  • 3. Myhre G., SHINDELL D., BRÉON F.-M., COLLINS W., FUGLESTVEDT J., HUANG J., KOCH D., LAMARQUE J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., Zhang H. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of WGI to the 5AR of the IPCC [STOCKER T.F., QIN D., PLATTNER G.-K., TIGNOR M., ALLEN S.K., BOSCHUNG J., NAUELS A., XIA Y., BEX V., MIDGLEY P.M. (eds.)]. Cambridge University Press, 2013.
  • 4. Frankignoulle M., Middelburg J.J. Biogases in tidal European estuaries: the BIOGEST project. Biogeochemistry 59, 1, 2002.
  • 5. Pulliam W.M. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecol. Monogr. 63, 29, 1993.
  • 6. Whalen S.C. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ. Eng. Sci. 22 (1), 73, 2005.
  • 7. Nyamadzawo G., Wuta M., Nyamangara J., Rees R.M., Smith J.L. The effects of catena positions on greenhouse gas emissions along a seasonal wetland (dambo) transect in tropical Zimbabwe. Arch. Acker. Pfl. Boden. 61, 203, 2014.
  • 8. Striegl R.G., Dornblaser M.M., McDonald C.P., Rover J.R., Stets E.G. Carbon dioxide and methane emissions from the Yukon River system. Global. Biogeochem. Cycles. 26, 1, 2012.
  • 9. Yang L.B., Li X.J., Yan W.J., Ma P., Wand J.N. CH4 concentrations and emissions from three rivers in the Chaohu Lake Watershed in Southeast China. J. Integr. Agric. 11, 665, 2012.
  • 10. Groffman P.M., Boulware N.J., Zipperer W.C., Pouyat R.V., Band L.E., Colosimo M.F. Soil nitrogen cycle processes in urban riparian zones. Environ. Sci. Tech. 36, 4547, 2002.
  • 11. Cole J.J., Caraco N.F. Emissions of Nitrous Oxide (N2O) from a Tidal, Freshwater River, the Hudson River, New York. Environ. Sci. Technol. 35, 991, 2001.
  • 12. Sanders I.A., Heppell C.M., Cotton J.A., Wharton G., Hildrew A.G., Flowers E.J., Trimmer M. Emissions of methane from chalk streams has potential implications for agricultural practices. Freshw. Biol. 52, 1176, 2007.
  • 13. Wilcock R.J., Sorrell B.K. Emissions of greenhouse gases CH4 and N2O from low-gradient streams in agriculturally developed catchments. Water. Air. Soil. Pollut. 188, 155, 2008.
  • 14. Saarnio S., Winiwarter W., Leita J. Methane release from wetlands and watercourses in Europe. Atmos. Environ. 43, 1421, 2009.
  • 15. Downing J.A., Cole J.J., Duarte C.A., Middelburg J.J., Melack J.M., Prairie Y.T., Kortelainen P., Striegl R.G., McDowell W.H., Tranvik L.J. Global abundance and size distribution of streams and rivers. Inland Waters 2, 229, 2012.
  • 16. Rulík M., Čáp L., Hlaváčov á E. Methane in the hyporheic zone of a small lowland stream (Sitka, Czech Republic). Limnologica 30, 359, 2000.
  • 17. Hlaváčová E., Rulík M., Čáp L. Anaerobic microbial metabolism in hyporheic sediment of a gravel bar in a small lowland stream. River. Res. Appl. 21, 1003, 2005.
  • 18. Cupalová J., Rul ík M. Bacterial community analysis in river hyporheic sediments – the influence of depth and particle size. Acta Universitatis Carolinaeana Environmentalica 21, 47, 2007.
  • 19. Buriánková I., Brablcová L., Mach V., Hýblová A., Badurová P., Cupalová J., Čáp L., Rulík M. Methanogens and methanothrops distribution in the hyporheic sediments of a small lowland stream. Fundam. Appl. Limnol. 181, 87, 2012.
  • 20. Hlaváčová E., Rulík M., Čáp L., Mach V. Greenhouse gases (CO2, CH4, N2O) emissions to the atmosphere from a small lowland stream. Arch. Hydrobiol. 165, 339, 2006.
  • 21. Anderson B., Bartlett K., Frolking S., Hayhoe K., Jenkins J., Salas W. Methane and Nitrous Oxide Emissions From Natural Sources. Office of Atmospheric Programs US EPA, 2010.
  • 22. Trimmer M., Grey J., Heppell C.M., Hildrew A.G., Lansdown K., Stahl H., Yvon -Durocher G. River bed carbon and nitrogen cycling: State of play and some new directions. Sci. Total. Environ. 434, 143, 2012.
  • 23. Wiesenburg D.A., Guinasso N.L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J .Chem. Eng. Data. 24, 356, 1979.
  • 24. Weiss R.F., Price B.A. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347, 1980.
  • 25. Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203, 1974.
  • 26. Crill P., Bartlett K.B., Harriss R.C., Gorham E., Verry E.S., Sebacher D.I., Madzar L., Sanner W. Methane flux from Minnesota peatlands. Glob. Biogeoch. Cyc. 2, 371, 1988.
  • 27. Pierobon E., Bolpagni R., Bartoli M., Viaroli P. Net primary production and seasonal CO2 and CH4 fluxes in a Trapa natans L. meadow. J. Limnol. 69 (2), 225, 2010.
  • 28. Cole J.J., Caraco N.F., Kling G.W., Kratz T.K. Carbon Dioxide Supersaturation in the Surface Waters of Lakes. Science 265, 1568, 1994.
  • 29. Rivett M.O., Buss S.R., Morgan P., Smith J.W.N., Bemment C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research 42, 4215, 2008.
  • 30. Wang D.Q., Chen Z.L., Sun W.W., Hu B.B., Xu S.Y. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net. Sci. China. Ser. B. 52, 652, 2009.
  • 31. Butman D., Raymond P.A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nat. Geosci. 4, 839, 2011.
  • 32. Rosamond M.S., Thuss S.J., Schiff S.L. Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nat, Geosci, 5, 715, 2012.
  • 33. Hinshaw S.E., Dahlgren R.A. Dissolved nitrous oxide concentrations and fluxes from the eutrophic San Joaquin River, California. Environ. Sci. Technol. 47 (3), 1313, 2013.
  • 34. Raymond P.A., Hartmann J., Lauerwald R., Sobek S., McDonald C., Hoover M., Butman D., Striegl R., Mayorga E., Humborg C., Kortelainen P., Dürr H., Meybeck M., Ciais P., Guth P. Global carbon dioxide emissions from inland waters. Nature 503, 355, 2013.
  • 35. Rasera M.F.F.L., Krusche A.V., Richey J.E., Ballester M.V.R., Vict ória R.L. Spatial and temporal variability of pCO2 and CO2 efflux in seven Amazonian Rivers. Biogeochemistry 116, 241, 2013.
  • 36. Lilley M.D., De Angelis M.A., Olson J.E. Methane concentrations and estimated fluxes from Pacific Northwest rivers. Mitt. Internat. Verein. Limnol. 25, 187, 1996.
  • 37. Zhang G., Zhang J., Liu S., Ren J., Xu J., Zhang F. Methane in the Changjiang (Yangtze River) Estuary and its adjacent marine area: riverine input, sediments release and atmospheric fluxes. Biogeochemsitry 91, 71, 2008.
  • 38. De Angelis M.A., Lilley M.D. Methane in surface waters of Oregon estuaries and rivers. Limnol. Oceanogr. 33, 716, 1987.
  • 39. Jones J.B., Holmes R.M., Fischer S.G., Grimm N.B., Greene D.M. Methanogenesis in Arizona, USA dryland streams. Biochemistry 31, 155, 1995.
  • 40. Storey R.G., Fulthorpe R.R., Williams D.D. Perspectives and predictions on the microbial ecology of the hyporheic zone. Freshw. Biol. 41, 119, 1999.
  • 41. MACH V., BLASER M.B., CLAUS P., CHAUDHARY P.P., RULIK M. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka. Front. Microbiol. 6, 506, 2015.
  • 42. Hope D., Palmer S.M., Billett M.F., Dawson J.J.C. Variations in dissolved CO2 and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages. Hydrol. Process. 18, 3255, 2004.
  • 43. Silvennoinen H., Liikanen A., Rintala J., Martikainen P.J. Greenhouse gas fluxes from the eutrophic Temmesjoki River and its Estuary in the Liminganlahti Bay (the Baltic Sea). Biogeochemistry 90, 193, 2008.
  • 44. Baker M.A., Dahm C.N., Vallet H.M. Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnol. Oceanogr. 44, 1530, 1999.
  • 45. Bouwman A.F., Bierkens M.F.P., Griffioen J., Hefting M.M., Middelburg , J.J, Middelkoop H., Slomp C.P. Biogeosciences Nutrient dynamics, transfer and retention along the aquatic continuum from land to ocean: towards integration of ecological and biogeochemical models. Biogeosciences 10, 1, 2013.
  • 46. Beaulieu J.J., Arango C.P., Tank J.L. The effects of season and agriculture on nitrous oxide production in headwater streams. J. Environ. Qual. 38, 637, 2009.
  • 47. BUTMAN D., RAYMOND P.A. Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience, NGEO1294, 2011.
  • 48. BASTVIKEN D., COLE J., PACE M., TRAVNIK L. Methane emissions from lakes: Dependence on lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18, 1, 2004.
  • 49. Maeck A., Hofmann H., Lorke A. Pumping methane out of aquatic sediments – ebullition forcing mechanisms in an impounded river. Biogeosciences 11, 2925, 2014.
  • 50. Segers R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23, 1998.
  • 51. Yvon -Durocher G., Montoya J.M., Woodward G., Jones J.I., Trimmer M. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob. Chang. Biol. 17, 1225, 2011.
  • 52. ORTIZ LLORENTE M. J., ALVAREZ COBELAS M. Comparison of biogenic methane emissions from unmanaged estuaries, lakes, oceans, rivers and wetlands. Atmos. Environ. 59, 328, 2012.
  • 53. SHELLEY F., ABDULLAHI F., GREY J., TRIMMER M. Microbial methane cycling inthe bed of a chalk river: oxidation has the potential to match methanogenesis enhanced by warming. Freshw. Biol. 59, fwb.12480, 2014.
  • 54. Natchimuthu S., Selvam B.P., Bastviken D. Influence of weather variables on methane and carbon dioxide flux from a shallow pond. Biogeochemistry. 119, 403, 2014.
  • 55. Yang S.S. Methane production in river and lake sediments in Taiwan. Environ Geochem. Health 20, 245, 1998.
  • 56. Middelburg J.J., Nieuwenhuize J., Iversen N., Høgh N., de Wilde H., Helder W., Seifert R., Christof O. Methane distribution in tidal estuaries. Biogeochemistry 59, 95, 2002.
  • 57. Lee K.E., Lorenz D.L., Petersen J.C., Greene J.B. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007–08: U.S. Geological Survey Scientific Investigations Report 2012.
  • 58. Campeau A., Del Giorgio P.A. Patterns in CH4 and CO2 concentrations across boreal rivers: Major drivers and implications for fluvial greenhouse emissions under climate change scenarios. Glob. Change. Biol. 20, 1075, 2014.
  • 59. Cole J.J., Prairie Y.T., Caraco N.F., McDowell W.H., Tranvik L.J., Striegl R.G., Duarte C.M., Kortelainen P., Downing J.A., Middelburg J.J., Melack J. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172, 2007.
  • 60. Battin T.J., Luyssaert S., Kaplan L.A., Aufdenkampe A.K., Richter A., Tranvik L.J. The boundless carbon cycle. Nat. Geosci. 2, 598, 2009.
  • 61. Tranvik L.J., Downing J.A., Cotner J.B., Loiselle S.A., Striegl R.G., Ballatore T.J., Dillon P., Finlay K., Fortino K., Knoll L.B., Kortelainen P.L., Kutser T., Larsen S., Laurion I., Leech D.M., McCallister S.L., McKnight D.M., Melack J.M., Overholt E., Porter J.A., Prairie Y., RenwickW.H., Roland F., Sherman B.S., Schindler D.W., Sobek S., Tremblay A., Vanni M.J., VerschoorA.M., Wachenfeldt E., Weyhenmeyer G.A. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298, 2009.
  • 62. Alin S.R., Rasera M.F.F.L., Salimon C.I., Richey J.E., Holtgrieve G.W., Krusche A.V., Snidvongs A. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J. Geophys. Res-Biogeo. 116, G01009, 2011.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a991a49d-41d4-49f7-bd21-1e760bda7371
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.