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ABSTRACT 

Energy-momentum (EM henceforth) localization problem is one of the old and unsolved issues 

theoretical physics. Plenty of studies have been introduced to clarify the localization problem and there 

are many prescriptions given in gravitational theories such as the general relativity (GR henceforth) and 

teleparallel gravity (TG henceforth) to deal with this issue. In a recent work, the energy-momentum 

localization problem has been extended to a modified theory of gravity. In the present work, we calculate 

energy density associated with the Reboucas-Tiomno-Korotkii-Obukhov (RTKO henceforth) spacetime 

by making use of the modified gravity version of Landau-Lifshitz (mLL henceforth) formulation. Also, 

we consider some viable 𝑓(𝑇)-gravity proposals.  
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1.  INTRODUCTION 

 

Theoretical physicists have interested in the problem of the EM localization over a 

hundred years. The process of seeking required solutions began with Einstein for the first time 

and is continuing up to the present day. Unfortunately, this problem has not been removed 

exactly and it has become a well-known puzzle. Due to working with the localized energy 

density is very significant to define total energy of our universe, there are many notations 

introduced in literature: the Einstein [1], Tolman [2], Papapetrou [3] Landau-Liftshitz [4], 

Bergmann-Thompson [5], Møller [6], Weinberg [7] and the Qadir-Sharif [8] prescriptions.  

Except for the Møller formulation, all of them should be used in a quasi-cartesian coordinate 

system in order to get meaningful conclusions. There are many papers about the EM 

localization issue [9-12]. Vargas [13], using some EM prescriptions in the framework of the 

TG, calculated the EM density of a Friedman–Robertson–Walker type spacetime and showed 

that the GR and TG versions of those EM formulations yield same results. Next, after this work, 

the problematic EM issue has been extended to different perspectives [14-17]. Recently, Abedi 

and Salti [18] derived an EM prescription in the realm of a modified teleparallel gravity. 

Furthermore, Ganiou et al. [19], in the framework of 𝑓(𝑇)-theory, studied the mLL energy 

formulation to evaluate the corresponding energy densities for some spacetime models.  

In the present work, we mainly focus on the mLL EM prescription written by Ganiou et 

al. [19]. In the next section, we briefly give some theoretical expressions of the mLL energy 

distribution. Considering some well-known 𝑓(𝑇)-gravity models, the mLL energy density 

associated with the RTKO spacetime is obtained in the third section. Subsequently, in the last 

section, we give concluding remarks. Note that we will use the Greek alphabet (𝛼, 𝛽, 𝛾, …) for 

the spacetime indices and the Latin alphabet (𝑎, 𝑏, 𝑐, …) to denote tangentspace indices. 

 

 

2.  PRELIMINARIES: MATERIALS AND METHODS  

 

Generally, the metric tensor (𝑔𝜇𝜈) plays very important role to formulate theories of 

gravity. On the other hand, the tetrad (ℎ    𝜇
𝑎  ) provides connection between curved and flat 

spacetimes and takes crucial roles while describing the structure of spacetime in the TG: 

 

ℎ    𝜇
𝑎 = 𝜕𝜇𝑥𝑎 + 𝐴    𝜇

𝑎                                                         (1) 

 

where 𝐴    𝜇
𝑎  is translational gauge potential and 𝑥𝑎 represents the tangent-space coordinates[9]. 

The tetrad and its inverse version satisfy the following relations: 

 

ℎ    𝜇
𝑎 ℎ𝑎

    𝜈 = 𝛿𝜇
𝜈 ,          ℎ    𝜇

𝑎 ℎ𝑏
    𝜇

= 𝛿𝑏
𝑎,       𝑔𝜇𝜈 = 𝜂𝑎𝑏ℎ   𝜇

𝑎 ℎ   𝜈 
𝑏 .                      (2) 

 

where, 𝛿𝜇
𝜈  describes the Kronecker delta function and 𝜂𝑎𝑏 = 𝑑𝑖𝑎𝑔(−1,+1,+1,+1) is the 

Minkowski metric. Moreover, in order to construct the torsion geometry, we need to the 

Weitzenböck connection which is given [9] by: 

 

Γ   𝜇𝜈
𝜎 = ℎ𝑎

   𝜎 ∂𝜈ℎ   𝜇
𝑎 = −ℎ   𝜇

𝑎 ∂𝜈ℎ𝑎
    𝜎.                    (3) 
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Next, antisymmetric torsion tensor is defined by using the Weitzenböck connection as 

 

𝑇   𝜇𝜈
𝜆 = −𝑇   𝜈𝜇

𝜆 = Γ    𝜈𝜇
𝜆 − Γ    𝜇𝜈

𝜆 .                           (4) 

 

Using torsion tensor components, one can define Freud’s super-potentials: 

 

𝑈𝛽
   𝜈𝜆 = ℎ𝑔𝛽𝜇 [𝑚1𝑇

𝜇𝜈𝜆 +
𝑚2

2
(𝑇𝜈𝜇𝜆 − 𝑇𝜆𝜇𝜈) +

𝑚3

2
(𝑔𝜇𝜆𝑇𝛽

𝛽𝜈
− 𝑔𝜈𝜇𝑇𝛽

𝛽𝜆
)],            (5) 

 

where ℎ = 𝑑𝑒𝑡(ℎ   𝜇
𝑎 ) and  𝑚1, 𝑚2 and 𝑚3 are three dimensionless coupling constants of the 

TG [10]. A specific choice of three dimensionless coupling constants, i.e. 𝑚1 =
1

4
, 𝑚2 =

1

2
 , and 

𝑚3 = −1, yields the equality between the GR and the TG.  

The LL EM density in the framework of the TG is written as follows [13]: 

 

ℎ𝐿𝜇𝜈 =
1

4𝜋
∂𝜆(ℎ𝑔𝜇𝛽𝑈𝛽

   𝜈𝜆).                          (6) 

 

A generalized form of the LL EM density (ℎ𝐿̃𝜇𝜈) defined in a modified TG is given [19] 

as follows: 

 

ℎ𝐿̃𝜇𝜈 = 𝑓𝑇(𝑇)ℎ𝐿𝜇𝜈 +
ℎ

4𝜋𝐺
𝑔𝜇𝜎𝑓𝑇𝑇(𝑇)𝑈𝜎

   𝜈𝜆𝜕𝜆𝑇  ,              (7) 

 

where 𝑓𝑇(𝑇) ≡
𝑑𝑓(𝑇)

𝑑𝑇
 , 𝑓𝑇𝑇(𝑇) ≡

𝑑2𝑓(𝑇)

𝑑𝑇2  and the torsion scalar is written as 

 

𝑇 =
1

4
𝑇𝜎𝜇𝜈T𝜎𝜇𝜈 +

1

4
𝑇𝜎𝜇𝜈𝑇𝜈𝜇𝜎 − 𝑇𝜎𝜇

𝜎 𝑇𝜈
𝜈𝜇

.            (8) 

 

Consequently, one can extract the mLL energy density considering the expression of 

ℎ𝐿̃00. So, it can be obtained that 

 

ℎ𝐿̃00 = 𝑓𝑇(𝑇)ℎ𝐿00 +
ℎ

4𝜋𝐺
𝑔0𝜎𝑓𝑇𝑇(𝑇)𝑈𝜎

   0𝜆𝜕𝜆𝑇  .              (9) 

 

 

3.  CALCULATIONS  

 

The RTKO type spacetime model is given by the following line-element [21-22], 

 

𝑑𝑠2 = 𝐴2(𝑡)[−(𝑑𝑡 + 𝑚𝑒𝑥𝑑𝑦)2 + 𝑑𝑥2 + 𝑒2𝑥𝑑𝑦2 + 𝑑𝑧2],        (10) 

 

where 𝑚 is a positive rotation parameter. The RTKO spacetime represents a spatially 

homogeneous, rotating and shear-free model with vanishing rotation. Thus, the matrix 

representations of the metric tensor and its inverse form are written as 
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 𝑔𝜇𝜈 =

[
 
 
 

−𝐴2(𝑡) 0 −𝑚𝑒𝑥𝐴2(𝑡) 0

0 𝐴2(𝑡) 0 0

−𝑚𝑒𝑥𝐴2(𝑡) 0 (1 − m2)𝑒2𝑥𝐴2(𝑡) 0

0 0 0 𝐴2(𝑡)

⁠

]
 
 
 

,                   (11) 

 

 

𝑔𝜇𝜈 =

[
 
 
 
 
 
 

m2−1

𝐴2(𝑡)
0 −

𝑚ⅇ−𝑥

𝐴2(𝑡)
0

0
1

𝐴2(𝑡)
0 0

−
𝑚ⅇ−𝑥

𝐴2(𝑡)
0

ⅇ−2𝑥

𝐴2(𝑡)
0

0 0 0
1

𝐴2(𝑡)]
 
 
 
 
 
 

.        (12) 

 

Also, using Eqn. (2), the surviving components of tetrads can be obtained as 

 

 ℎ    𝜇
𝑎 =

[
 
 
 
𝐴[𝑡] 0 m𝑒𝑥𝐴[𝑡] 0
0 𝐴[𝑡] 0 0

0 0 𝑒𝑥𝐴[𝑡] 0
0 0 0 𝐴[𝑡]]

 
 
 
,      ℎ𝑎

    𝜇
=

[
 
 
 
 
 
 

1

𝐴[𝑡]
0 0 0

0
1

𝐴[𝑡]
0 0

−
m

𝐴[𝑡]
0

ⅇ−𝑥

𝐴[𝑡]
0

0 0 0
1

𝐴[𝑡]]
 
 
 
 
 
 

 .      (13) 

  

With the help of Eqns. (3) and (13), non-zero components of the Weitzenböck connection 

are calculated as 

 

Γ   00
0 = Γ   10

1 = Γ   20
2 = Γ   30

3 =
𝐴̇

𝐴
 ,  Γ   21

2 = 1  ,               (14) 

 

where the dot means time-derivative, i.e. 𝐴̇ ≡
𝑑𝐴(𝑡)

𝑑𝑡
. Subsequently, the surviving components of 

anti-symmetric torsion tensor can be found by considering Eqn. (4): 

 

 T   01
1 = −T   10

1 = T   02
2 = −T   20

2 = T   03
3 = −T   30

3 =
𝐴̇

𝐴
 ,  T   12

2 = −T   21
2 = 1.       (15) 

 

Hence, Freud’s super-potential yields the following results 

 

𝑈0
   01 = −𝑈0

   10 =
1

4
𝑒𝑥(2 − 𝑚2)𝐴2, 

 

𝑈0
   02 = −𝑈0

   20 = −m𝐴𝐴̇, 

 

𝑈0
   12 = −𝑈0

   21 = −
1

4
m𝐴2, 

 

𝑈1
   01 = −𝑈1

   10 = 𝑒𝑥(1 − 𝑚2)𝐴𝐴̇, 
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𝑈1
   02 = −𝑈1

   20 =
1

4
m𝐴2, 

 

𝑈1
   12 = −𝑈1

   21 = −m𝐴𝐴̇, 

 

𝑈2
   01 = −𝑈2

   10 =
1

4
𝑒2𝑥m(1 − 𝑚2)𝐴2, 

 

𝑈2
   02 = −𝑈2

   20 = 𝑒𝑥(1 − 𝑚2)𝐴𝐴̇, 

 

𝑈2
   12 = −𝑈2

   21 = −
1

4
𝑒𝑥m2𝐴2, 

 

𝑈3
   03 = −𝑈3

   30 = 𝑒𝑥(1 − 𝑚2)𝐴𝐴̇, 

 

𝑈3
   13 = −𝑈3

   31 = −
1

2
𝑒𝑥𝐴2, 

 

 𝑈3
   23 = −𝑈3

   32 =  m𝐴𝐴̇.                      (16) 

 

where ℎ = 𝑒𝑥𝐴4. 

So, the LL energy density can be found by making use of the relation of Freud’s super-

potentials. Then, it is found that 

 

 ℎ𝐿00 =
ⅇ2𝑥(m2−1)𝐴4

4𝜋
.                   (17) 

 

Moreover, we can use some well-known specific 𝑓(𝑇)-gravity models to calculate the 

mLL energy density.  

 The first model is defined [23] by 

 

𝑓𝐼(𝑇) = 𝑎𝑇 +
𝑏

𝑇
 ,                 (18) 

 

where 𝑎 and 𝑏 are represent two positive reel numbers. For this case, after using Freud’s super-

potentials and Eqn. (9), the corresponding energy density is computed as 

 

 ℎ𝐿̃𝐼
00 =

1

4𝜋
𝑒2𝑥(m2 − 1)𝐴4 {𝑎 −

4𝑏𝐴8

[m2𝐴2+12(m2−1)𝐴̇2]2
}.              (19) 

 

Here, we used the following expression of the torsion scalar 

 

𝑇 =
6(1−m2)𝐴̇2

𝐴4 −
m2

2𝐴2                             (20) 

 

 The second model is given [23] by 

 

𝑓𝐼𝐼(𝑇) = 𝑎𝑇 + 𝑏𝑇n,                      (21) 
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were 𝑛 is a constant.  For this case, the corresponding energy density can be found as 

 

 ℎ𝐿̃𝐼𝐼
00 =

1

4𝜋
𝑒2𝑥(m2 − 1)𝐴4 {𝑎 + 𝑏𝑛 [

6(1−m2)𝐴̇2

𝐴4 −
m2

2𝐴2]
𝑛−1

}.          (22) 

 

 As a final model [23], we take the following expression 

 

  𝑓𝐼𝐼𝐼(𝑇) = 𝑎𝑇 + 𝑏𝑇δln (𝑇),                            (23) 

 

where 𝛿 is another constant. So, the mLL energy is obtained as 

 

 ℎ𝐿̃𝐼𝐼𝐼
00 =

ⅇ2𝑥(m2−1)𝐴4

4𝜋
{𝑎 + 21−δ𝑏 [1 + δln (

12(1−m2)𝐴̇2−m2𝐴2

𝐴4
)] [

12(1−m2)𝐴̇2−m2𝐴2

𝐴4
]
δ−1

}.   (24) 

 

 

4.  CONCLUSIONS  

 

Studying the EM localization problem is very interesting and yields important conclusion 

both in the GR and the TG. As we mentioned in the first section, one of the important 

prescriptions is the LL EM complex. In the present study, using the mLL formulation, we 

discuss the modified energy density in the RTKO spacetime model for three viable 𝑓(𝑇)-gravity 

cases. After assuming a suitable set of constants, for instance 𝑎 = 1, 𝑏 = 0, in the 𝑓(𝑇)-gravity 

models, one can easily see that our results can be reduced to their TG versions: 

 

ℎ𝐿00 =
ⅇ2𝑥(m2−1)𝐴4

4𝜋
. 

 

If it can be defined an exact form of the cosmic scale factor 𝐴(𝑡), we can understand the 

evolutionary behavior of energy density and describe effects of the modified gravity for the 

selected spacetime model. 
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