PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 13 | 1 |

Tytuł artykułu

Elaboration of in vitro root culture protocols to efficiently limit Daphne sudden death syndrome

Treść / Zawartość

Warianty tytułu

PL
Opracowanie protokołu kultur in vitro korzeni w celu ograniczania porażenia zespołem nagłej śmierci wawrzynka

Języki publikacji

EN

Abstrakty

EN
In this study in vitro root culture protocol was elaborated in order to diversify screening methods and develop quick and reliable assay to test the level of chosen Daphne genotype resistance tofungal pathogen Thielaviopsis basicola. Plantlets of Daphne caucasica, D. cneorum, D. jasminea, and D. pontica were propagated asepti-cally on medium composed of WPM mineral salts and MS vitamins, supplemented with 1.0 mg dm-3 2iP, 0.1 mg dm-3 NAA, 0.5 g dm-3 PVP, 0.5 g dm-3 MES, 0.65 g dm-3 cal-cium gluconate, and 20 g dm-3 sucrose. Root cultures were initiated from adventitious roots regenerated on micropropagated shoots.Proliferative root cultures of examined Daphne species were obtained both on solidified and liquid medium, supplemented with various doses of NAA. Cultures of detached roots proved to be a convenient system of testing to T. basicola resistance. Daphne roots cultured in vitro were distinctly contami-nated under laboratory conditions. Susceptibility of cultured organs differed between spe-cies. This simple method is appropriate to be put into practice for quick selection of resis-tant/tolerant genotypes to the soil-borne fungal pathogens affecting plants via root system.
PL
Opracowano protokół prowadzenia kultur korzeni wybranych genotypów Daphne z zamiarem stworzenia możliwości testowania ich podatności na Thielaviopsis basicola w warunkach in vitro. Mikropędy Daphne caucasica, D. cneorum, D. jasmineai D. pontica rosáy na pożywce mineralnej WPM wzbogaconej o zestaw witamin i amino-kwasów z pożywki MS oraz 1,0 mg dm-3 2iP, 0,1 mg dm-3 1-NAA, 0,5 g dm-3 PVP, 0,5 g dm-3 MES, 0,65 g dm-3 glukonianu wapnia. Kultury korzeni inicjowano z korzeni przybyszowych regenerowanych w bazalnej strefie mikropędów. Uzyskano silnie proliferujące kultury korzeni zarówno na pożywkach płynnych, jak i zestalonych, wzbogaconych NAA na zróżnicowanym poziomie stężeń. Kultury te okazały się przydatne do prowadzenia testów przesiewowych w warunkach laboratoryjnych, przy czym podatność poszczególnych genotypów była zróżnicowana. Ta stosunkowo prosta metoda może byü stosowana w celu szybkiej selekcji genotypów odpornych bądź tolerancyjnych na porażenia patogenami grzybowymi infekującymi organizm roślinny poprzez system korzeniowy.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

13

Numer

1

Opis fizyczny

p.117-127,fig.,ref.

Twórcy

  • Department of Botany, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland
  • University of Agriculture in Krakow, Krakow, Poland
autor
  • University of British Columbia, Vancouver, Canada

Bibliografia

  • Allison C.C., 1938. Physiologic specialization of Thielaviopsis basicola on tobacco. Phytopathol-ogy 28, 1.
  • Altman A., 1999. Plant biotechnology in the 21st century: the challenges ahead. Elect. J. Biotech. www.ejb.org/content/vol2/issue2/full/1.
  • Brunelli A., 2010. A new background in the protection of plants from biotic pathogens. J. Plant Pathol. 92, suppl. 4, 447.
  • Compton M.E., 1994. Statistical methods suitable for the analysis of plant tissue culture data. Plant Cell Tiss. Organ Cult. 37, 217–242.
  • D’Ovidio R., Janni M., Volpi C., Rochchi V., 2010. Cell wall reinforcement for wheat improve-ment against fungal pathogen. J. Plant Pathol. 92, suppl. 4, 449.
  • Grasser R., Kern H., Defago G., 1988a. Resistance of tobacco to Thielaviopsis basicola under tissue culture conditions and increased susceptibility after transformation with Agrobacte-rium tumefaciens T-DNA. J. Phytopathol. 123, 105–114.
  • Grasser R., Kern H., Defago G., 1988b. Scopolin, a biochemical marker for resistance to Thie-laviopsis basicola in callus and crown-gall tissue cultures of tobacco. J. Phytopathol. 123, 115–123.
  • Halford N.G., 2012. Toward two decades of plant biotechnology: successes, failures, and pros-pects. Food Energy Sec. 1(1), 9–28.
  • Hanus-Fajerska E., Farfán L., Riseman A., 2008. PodatnoĞü wawrzynka gáówkowego na Thie-laviopsis basicola w testach in vitro. Zesz. Probl. Post. Nauk Roln. 531, 57–62.
  • Hanus-Fajerska E., Wiszniewska A., Czaicki P., 2012. Effectiveness of Daphne L. (Thyme-laeaceae) in vitro propagation, rooting of microshoots and acclimatization of plants. Acta Agrobot. 65(1), 21–28.
  • Hood M.E., Shew H.D., 1997. Initial cellular interactions between Thielaviopsis basicola and tobacco root hairs. Phytopathology 87, 228–235
  • Karban R., 2011. The ecology and evolution of induced resistance against herbivores. Funct. Ecol. 25, 339–347.
  • Lloyd G., McCown B., 1981. Commercially feasible micropropagation of mountain laurel (Kal-mia latifolia) by use of shoot tip culture. Int. Plant Prop. Soc. Proc. 30, 421–427.
  • Miazzi M.M., Hajjeh H.R., Faretra F., 2010. An in vitro method to evaluate grapevine cultivars for Erysiphe necator susceptibility. In Vitro Cell Dev. Biol. Plant 46(4), 363–367.
  • Murashige T., Skoog F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.
  • Nishimura M.T., Dangl J.L., 2010. Arabidopsis and the plant immune system. Plant J. 61, 1053–1066.
  • Noshad D., Punja Z.K., Riseman A., 2006. First report of Thielaviopsis basicola on Daphne cneorum. Can. J. Plant Pathol. 28, 310–312.
  • \
  • Noshad D., Punja Z.K., Riseman A., 2007. Evaluation of Daphne germplasm for resistance of Daphne Sudden Death Syndrome caused by the soil-borne pathogen Thielaviopsis basicola. HortSci. 42, 1639–1643.
  • Noshad D., 2007. Daphne Sudden Death Syndrome (DSDS). Pathogen identification, characterization and screening for disease resistance. Vancouver, Canada, University of British Columbia, PhD Thesis. Orsini F., Cascone P., De Pascale S., Barbieri G., Corrado G., Rao R., Maggio A., 2010. Systemin-dependent salinity tolerance in tomato: evidence of specific convergence of abiotic and biotic stress responses. Physiol. Plant. 138, 10–21.
  • Punja Z.K., 2001. Genetic engineering of plants to enhance resistance to fungal pathogens, a review of progress and future prospects. Can. J. Plant Pathol. 23, 216–235.
  • Sowik I., Michalczuk L., Wójcik D., 2008. A method for in vitro testing strawberry susceptibility to Verticillum wilt. J. Fruit Ornam. Plant Res. 16, 111–121.
  • Švabova L., Lebeda A., 2005. In vitro selection for improved plant resistance to toxin-producing pathogens. J. Phytopathol. 153, 52–64.
  • van den Bulk R.W., 1991. Application of cell and tissue culture and in vitro selection for disease resistance breeding – a review. Euphytica 56, 269–285.
  • Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S., 2002. Agricultural sustainability and intensive production practices. Nature 418, 671–677.
  • Wani S.H., Sanghera G.S., Singh N.B., 2010. Biotechnology and plant disease control – role of RNA interference. Am. J. Plant Sci. 1, 55–68.
  • Zang Y., Shi J.Y., Zang J.D., Guo X.Q., 2010. Identification of novel NPR1-like gene from Nicotiana glutinosa and its role in resistance to fungal, bacterial and viral pathogens. Plant Biol. 12, 23–34.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a8bf66db-4657-4160-85d4-6b178ac6b28a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.