Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 25 | 5 |
Tytuł artykułu

Chromate-reducing profile of bacterial strains isolated from industrial effluents

Warianty tytułu
Języki publikacji
Initially 73 chromium(VI)-resisting bacteria were isolated from nine samples collected from three industrial cities (Kasur, Kalashahkaku, and Sialkot) of Pakistan. Eleven strains with the highest chromium resistance also were selected. Among these highly resistant selected isolates (MTC ≥ 250 mM), AM81 (Cellulosimicrobium cellulans) showed the highest MTC of 375 mM against Cr(VI). Biochemical characterization was used to identify the families of bacteria after initial screening. Four isolates shared origin with Staphylococcaceae — three each with Promicromonosporaceae and Microbacteriaceae, and a single strain was related to Bacillales Family XII incertaesedis. 16S rRNA was used for species identification and found KM2 to be Leucobacter chironomid, KS1W; Microbacterium sp., SIS21 and KSKE42; Staphylococcus saprophyticus, SIS22; Staphylococcus sciuri, SIS51; Staphylococcus xylosus, MWM81, AM81, and KSKE3; Cellulosimicrobium cellulans, MWM82; and Microbacterium paraoxydans, KSKE41 was Exiguobacterium profundum. Strains tolerated the stress of other heavy metals (cadmium, mercury, copper, zinc, arsenic, and manganese) to variable extant along with chromium(VI). Antibiotic susceptibility was found to be more for streptomycin (10 μg ml-1) and the least susceptibility was observed for kanamycin (30 μg ml-1).
Słowa kluczowe
Opis fizyczny
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
  • Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Pakistan
  • 1. ZHOU Y., XU Y.B., XU S.H., ZHANG X.H., JX X. The isolation, identification and biochemical reducing pathway of Cr (VI)-removal bacterium Brevibacillus parabrevis from sludge biosystem. In: Wu, Y. [Ed.] International Conference on, Energy Environmental, Engineering CRC Press/Balkema, Leiden, the Netherlands, 2015.
  • 2. MADHAVI V.I., REDDY A.V.B., REDDY K.G., MADHAVI G., PRASAD T.N.K.V. An overview on research trends in remediation of chromium. Res. J. Recent Sci. 2 (1), 71, 2013.
  • 3. AHEMAD M. Bacterial mechanisms for Cr (VI) resistance and reduction: an overview and recent advances. Folia Microbiol. 59 (4), 321, 2014.
  • 4. NGUEMA P.F., LUO Z., LIAN J.J. Enzymatic chromium (VI) Reduction by cytoplasmic and cell membrane fractions of chromate-reducing bacterium isolated from sewage treatment plant. Int. J. Biol. 6 (2), 64, 2014.
  • 5. CERVANTES C., CAMPOS-GARCIA J., DEVARS S., GUTIERREZ-CORONA F., LOZA-TAVERA H., TORRES-GUZMAN J.C., MORENO-SANCHEZ R. Interactions of chromium with microorganisms and plants. FEMS Microbiol. Rev. 25 (3), 335, 2001.
  • 6. LIU X., WU G., ZHANG Y., WU D., LI X., LIU P. Chromate reductase YieF from Escherichia coli enhances hexavalent chromium resistance of human HepG2 cells. Int. J. Mol. Sci. 16 (6), 11892-11902, 2015.
  • 7. USEPA. IRIS Toxicological Review of Hexavalent Chromium (External Review Draft). U.S. Environmental Protection Agency, Washington D.C. EPA/635/R- 10/004A, 2010.
  • 8. GOPALAKRISHNAN S., KANNADASAN T., VELMURUGAN S., MUTHU S., KUMAR V.P. Biosorption of chromium (VI) from industrial effluent using Neem leaf adsorbent. Res. J. Chem. Sci. 3 (4), 48, 2013.
  • 9. WANG P., MA Y., WANG C., ZHANG S., CHENG S. Isolation and characterization of heavy metal resistant bacteria capable of removing Cr (VI). Pol. J. Environ. Stud. 24 (1), 339, 2015.
  • 10. PEI Q.H., SHAHIR S., RAJ A.S.S., ZAKARIA Z.A., AHMAD W.A. Chromium (VI) resistance and removal by Acinetobacter haemolyticus. World J. Microbiol. Biotechnol. 25 (6), 1085, 2009.
  • 11. SONI S.K., SINGH R., AWASTHI A., SINGH M., KALRA A. In vitro Cr (VI) reduction by cell-free extracts of chromate-reducing bacteria isolated from tannery effluent irrigated soil. Environ. Sci. Pollut. Res. 20 (3), 1661, 2013.
  • 12. CLESCERI L.S., GREENBERG A.E., EATON A.D. Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington. 1325, 1998.
  • 13. DELEO P.C., EHRLICH H.L. Reduction of hexavalent chromium by Pseudomonas fluorescens LB 300 in batch and continuous cultures. Appl. Microbiol. Biotechnol. 40, 756, 1994.
  • 14. ALTSCHUL S.F., MADDEN T.L., SCHAFFER A.A., ZHANG J., ZHANG Z., MILLER W., LIPMAN D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25 (17), 3389, 1997.
  • 15. POMMERVILLE J.C., ALCAMO I.E. Alcamo’s Laboratory Fundamentals of Microbiology. Jones and Bartlett, Sudbury, MA. 2007.
  • 16. HOLMES A.L., WISE S., WISE S.J.P. Carcinogenicity of hexavalent chromium. Indian J. Med. Res. 128 (4), 353, 2008.
  • 17. SAU G.B., CHATTERJEE S., SINHA S., MUKHERJEE S.K. Isolation and characterization of a Cr (VI) reducing Bacillus firmus strain from industrial effluents. Pol. J. Microbiol. 57 (4), 327, 2008.
  • 18. SULTAN S., HASNAIN S. Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource Technol. 98 (2), 340, 2007.
  • 19. AMOOZEGAR M.A., GHASEMI A., RAZAVI M.R., NADDAF S. Evaluation of hexavalent chromium reduction by chromate-resistant moderately halophile, Nesterenkonia sp. strain MF2. Process Biochem. 42 (10), 1475, 2007.
  • 20. NARAYANI M., SHETTY K.V. Chromium-resistant bacteria and their environmental condition for hexavalent chromium removal: A review. Crit. Rev. Env. Sci. Tec. 43 (9), 955, 2013.
  • 21. CHENG G., LI X. Bioreduction of chromium(VI) by Bacillus sp. isolated from soils of iron mineral area. European J. Soil Biol. 45 (5-6), 483, 2009.
  • 22. CHAI L., HUANG S., YANG Z., PENG B., HUANG Y., CHEN Y. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. J. Hazard. Mater. 167 (1-3), 516, 2009.
  • 23. SHAKOORI A.R. Microorganisms resistant to heavy metals and toxic chemicals as indicators of environmental pollution and their use in bioremediation. Folia Biol. 48 (3-4), 143, 1999.
  • 24. VERMA T., GARG S.K., RAMTEKE P.W. Genetic correlation between chromium resistance and reduction in Bacillus brevis isolated from tannery effluent. J. Appl. Microbiol. 107 (5), 1425, 2009.
  • 25. FAISAL M., HASNAIN S. Beneficial role of hydrophytes in removing Cr (VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium. Int. J. Phytoremediat. 7 (4), 271, 2005.
  • 26. CHEUNG K.H., GU J.D. Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World J. Microbiol. Biotechnol. 21 (3), 213, 2005.
  • 27. THACKER U., PARIKH R., SHOUCHE Y., MADAMWAR D. Hexavalent chromium reduction by Providencia sp. Process Biochem. 41 (6), 1332, 2006.
  • 28. ABOU-SHANAB R., ANGLE J., VAN BERKUM P. Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.). Int. J. Phytoremediat. 9 (2), 91-105, 2007.
  • 29. RAJBANSHI A. Study on heavy metal resistant bacteria in Guheswori sewage treatment plant. Our Nature 6 (1), 52, 2009.
  • 30. JAIN P.K., RAMACHANDRAN S., SHUKLA V., BHAKUNI D., VERMA S.K. Characterization of metal and antibiotic resistance in a bacterial population isolated from copper mining industry. Int. J. Integrative Biol 6, 57, 2009.
  • 31. KARBASIZAED V., BADAMI N., EMTIAZI G. Antimicrobial, heavy metal resistance and plasmid profile of coliforms isolated from nosocomial infections in a hospital in Isfahan, Iran. Afr. J. Biotechnol. 2 (10), 379, 2004.
  • 32. BAKER-AUSTIN C., WRIGHT M.S., STEPANAUSKAS R., MCARTHUR J.V. Co-selection of antibiotic and metal resistance. Trends in Microbiol. 14 (4), 176, 2006
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.