PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 23 | 3 |

Tytuł artykułu

CFD modelling of syngas combustion and emissions for marine gas turbine applications

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Strong restrictions on emissions from marine power plants will probably be adopted in the near future. One of the measures which can be considered to reduce exhaust gases emissions is the use of alternative fuels. Synthesis gases are considered competitive renewable gaseous fuels which can be used in marine gas turbines for both propulsion and electric power generation on ships. The paper analyses combustion and emission characteristics of syngas fuel in marine gas turbines. Syngas fuel is burned in a gas turbine can combustor. The gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The analysis is performed numerically using the computational fluid dynamics code ANSYS FLUENT. Different operating conditions are considered within the numerical runs. The obtained numerical results are compared with experimental data and satisfactory agreement is obtained. The effect of syngas fuel composition and the swirl number values on temperature contours, and exhaust gas species concentrations are presented in this paper. The results show an increase of peak flame temperature for the syngas compared to natural gas fuel combustion at the same operating conditions while the NO emission becomes lower. In addition, lower CO2 emissions and increased CO emissions at the combustor exit are obtained for the syngas, compared to the natural gas fuel

Słowa kluczowe

Wydawca

-

Rocznik

Tom

23

Numer

3

Opis fizyczny

p.39-49,fig.,ref.

Twórcy

autor
  • Department of Naval Architecture and Marine Engineering, Alexandria University, Egypt
autor
  • Department of Naval Architecture and Marine Engineering, Alexandria University, Egypt

Bibliografia

  • 1. VianaM., et al., Impact of maritime transport emissions on coastal air quality in Europe. Atmospheric Environment 90,pp. 96-105, 2014.
  • 2. Wang C., Corbett J.J., Firestone J., Improving spatial representation of global ship emissions inventories. Environmental Science and Technology 42, pp. 193199,2008.
  • 3. EEA.: Transport indicators tracking progress towards environmental targets in Europe. The Contribution of transport to air quality.EEA, Copenhagen, 2012.
  • 4. Eyringer V., Köhler H. W., Lauer A., Lemper B., Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. J. Geophys 110, D17306,2005.
  • 5. Corbett J.J., Winebrake J.J., Green E.H., KasibhatlaP., Eyring V., LauerA., Mortality from ship emissions: a global assessment. Environmental Science and Technology 41, pp. 8512-85182007.
  • 6. Endresen Ø., Sørgård E., Sundet J.K., Dalsøren S.B., Isaksen I.S., Berglen T.F., Gravir G., Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, pp. 108, 2003.
  • 7. Ülpre H., Eames I., Environmental policy constraints for acidic exhaust gas scrubber discharges from ships. Marine Pollution Bulletin 88,pp. 292–301, 2014.
  • 8. IMO.: Second IMO GHG study. London, UK, 2009.
  • 9. RavenJ., Caldeira K., Elderfield H., Hoegh-Guldberg O., Liss P., Riebesell U., Shepherd J., Turley C., Watson A.: Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society: The Science Policy Section, 2005.
  • 10. Blatcher D., Eames I., Compliance of royal navy ships with nitrogen oxide emissions legislation. Mar. Pollut. Bull 74, pp. 10–18, 2013.
  • 11. CalleyaJ., PawlingR., GreigA., Ship impact model for technical assessment and selection of Carbon Dioxide Reducing Technologies (CRTs). Ocean Engineering 97, pp. 82–89,2015.
  • 12. AzimovU., TomitaE., KawaharaN., and DolS. S., Combustion characteristics of syngas and natural gas in micro-pilot ignited dual-fuel engine. World Academy of Science, Engineering and Technology 6(12), pp. 15951602, 2012.
  • 13. Weaver C.: Natural gas vehicles – a review of the state of the art. SAE technical paper 892133, doi:10.4271/892133, 1989.
  • 14. Nichols R.J., The challenges of change in the auto industry: Why alternative fuels? J.Eng.Gas Turb Power 116,pp. 72732, 1994.
  • 15. Lieuwen T., Yang V., Yetter R.: Synthesis gas combustion: Fundamentals and applications. Taylor & Francis Group, 2010.
  • 16. MuradovN. Z., and VezirogluT. N., Green path from fossil-based to hydrogen economy: An overview of carbon neutral technologies. Int. J. Hydrogen Energy 33,pp. 6804–6839, 2008.
  • 17. RiboldiL.,Bolland O., Pressure swing adsorption for coproduction of power and ultrapure H2 in an IGCC plant with CO2 capture. International Journal of Hydrogen Energy 41(25), pp. 10646-10660, 2016.
  • 18. Funke H. H.-W., et al., Experimental and numerical study of the micro mix combustion principle applied for hydrogen and hydrogen- rich syngas as fuel with increased energy density for industrial gas turbine. Applications Energy Procedia 61, pp. 1736 – 1739, 2014.19. BouvetN., et al., Characterization of syngas laminar flames using the Bunsen burner configuration. International Journal of Hydrogen Energy 36, pp. 992-1005, 2011.
  • 20. Domachowski Z., Dzida M., An analysis of characteristics of ship gas turbine propulsion system (in the light of the requirements for ship operation in the Baltic Sea). Pol. Marit, [special issue], pp. 73–78, 2004.
  • 21. Khalil A. E. E., Gupta A. K., Swirling flow-field for colorless distributed combustion. Applied Energy 113, pp. 208–218,2014.
  • 22. Lilley D.G., Modeling of combustor swirl flows. Acta Astronautica 1(9-10), pp. 1129-1147,1974.
  • 23. Syred N., Beér J.M., Combustion in swirling flows: A review. Combustion and Flame 23(2), pp.143-201, 1974.
  • 24. Osvaldo V-Z. M., Syred N., Agustín V-M., Daniel D. R-U., Flashback avoidance in swirling flow burners. Ingeniería, Investigacióny Tecnología 15(4), pp. 603-614,2014.
  • 25. Zaid A., FaragA.: Effect of secondary air configuration in gas turbine combustor firing natural gas. Proceedings of the ASME 2014 International Mechanical Engineering Congress & Exposition IMECE2014, Montreal, Quebec, Canada, November 14-20, 2014.
  • 26. Beer J.M., and Chigier, N.A.: Combustion Aerodynamics, Applied Science Publishers, London, England, 1972.
  • 27. GAMBIT team: GAMBIT program user guide, September 2006.
  • 28. Knopp T., Eisfeld B., Calvo J. B., A new extension for k –ῼ turbulence models to account for wall roughness. International Journal of Heat and Fluid Flow 30, pp. 54– 65, 2009.
  • 29. Cheng P., Two-dimensional radiating gas flow by a moment method. AIAA Journal 2, pp. 1662–1664, 1964.
  • 30. Siegel R., Howell J. R.: Thermal radiation heat transfer. Hemisphere, Washington, DC, USA, 1992.
  • 31. Ahmed A. S., Velocity measurements and turbulence statistics of a confined isothermal swirling flow. Experimental Thermal and Fluid Science 17, pp. 256 – 264, 1998.
  • 32. AndreiniA., et al., CFD analysis of NOx emissions of a natural gas lean premixed burner for heavy duty gas turbine. Energy Procedia 81, pp. 967 – 976, 2015.
  • 33. Ghenai C., Combustion of syngas fuel in gas turbine can combustor. Hindawi publishing corporation. advances in Mechanical Engineering, doi:10.1155/2010/342357, pp. 1-13, 2010.
  • 34. Whitty K. J., Zhang H. R., and Eddings E. G., Emissions from syngas combustion. Combust. Sci. and Tech. 180, pp. 1117–1136, 2008.
  • 35. Chacartegui R., et al., Analysis of main gaseous emissions of heavy duty gas turbines burning several syngas fuels. Fuel Processing Technology 92, pp. 213–220, 2011.
  • 36. WelayaY.M., Mosleh M., Ammar N.R., Thermodynamic Analysis of Combined Solid Fuel Cell with a Steam Turbine Power Plant for Marine Applications. Brodgradnja/ Shipbuilding 65(1), pp. 97-115, 2014.
  • 37. Welaya Y.M., Mosleh M., Ammar N.R., Thermodynamic analysis of a combined gas turbine power plant with a solid oxide fuel cell for marine applications. Int. J. Naval Archit. Ocean Eng. 5 , pp. 404-413, 2013.
  • 38. Mustafi N.N., Miraglia Y.C., Raine R.R., Bansal P.K., and Elder S.T., Sparkignition engine performance with ‘Powergas’ fuel (mixture of CO=H2): A comparison with gasoline and natural gas. Fuel 85(12–13), pp. 1605–1612, 2006.
  • 39. Ratafia-Brown, J.A., Manfredo L.M., Hoffman J.W., Ramezan M., and Steigel G.J.: An environmental assessment of IGCC power systems. Presented at the Nineteenth Annual Pittsburgh Coal Conference, Pittsburgh, PA, 23–27 September, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a71b7b9e-ddd9-430c-a321-80d277d5c378
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.