PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |
Tytuł artykułu

Full-fat insect meals as feed additive – the effect on broiler chicken growth performance and gastrointestinal tract microbiota

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to evaluate the effect of full-fat insect meals fed ‘on top’ to broiler chickens on their performance and the microbiota composition in the gastrointestinal tract. A total of 1850 day-old Ross 308 females were used in a set of four independent experiments. The insects Gryllodes sigillatus, Shelfordella lateralis, Gryllus assimilis, Tenebrio molitor and Hermetia illucens were applied in amounts that varied from 0.05 to 0.2%. In general, the application of insect meals to the diets of broilers did not affect their growth performance over the experimental period. However, the 0.2% additions of T. molitor and H. illucens increased feed intake at days 15–35 (P = 0.011) and the entire period of feeding (days 1–35; P = 0.018) (Experiment 3). Moreover, in Experiment 4 the supplementation of 0.2% of S. lateralis improved body weight gain (days 11–21 and 1–21), feed intake (days 1–10 and 1–21) and feed conversion ratio (days 1–21). The addition of insect meals reduced the pH value of digesta in the crop (Experiments 1 and 2) and in the caeca (Experiment 2). Supplementation with H. illucens caused the most significant effect on the microbiota populations in the crop, ileum and caeca (Experiment 3). However, at the higher levels of S. lateralis addition to the diets of broilers, the counts of selected microbiota in the crop and ileum increased (Experiment 4). These results indicate that the application of the insect full-fat meals in relatively small amounts can affect the microbiota composition in the gastrointestinal tract of broiler chickens.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
2
Opis fizyczny
p.131-139,ref.
Twórcy
autor
  • Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wolynska 35, 60-637 Poznan, Poland
  • Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
autor
  • Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
  • Institute of Zoology, Division of Inland Fisheries and Aquaculture, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland
  • Institute of Zoology, Division of Inland Fisheries and Aquaculture, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland
  • HiProMine S. A., Poznanska 8, 62-023 Robakowo, Poland
  • HiProMine S. A., Poznańska 8, 62-023 Robakowo, Poland
autor
  • HiProMine S. A., Poznańska 8, 62-023 Robakowo, Poland
  • HiProMine S. A., Poznańska 8, 62-023 Robakowo, Poland
  • Department of Nutrition Physiology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland
autor
  • Department of Animal Nutrition, Poznan University of Life Sciences, Wolynska 33, 60-637 Poznan, Poland
Bibliografia
  • Awoniyi T.A.M., Aletor V.A., Aina J.M., 2003. Performance of broiler – chickens fed on maggot meal in place of fishmeal. Int. J. Poult. Sci. 2, 271–274, https://doi.org/10.3923/ijps.2003.271.274
  • Bovera F., Piccolo G., Gasco L., Marono S., Loponte R., Vassalotti G., Mastellone V., Lombardi P., Attia Y.A., Nizza A., 2015. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Br. Poult. Sci. 56, 569–575, https://doi.org/10.1080/00071668.2015.1080815
  • Choi S.C., Ingale S.L., Kim J.S., Park Y.K., Kwon I.K., Chae B.J., 2013a. Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Anim. Feed Sci. Technol. 185, 78–84, https://doi.org/10.1016/j.anifeedsci.2013.07.005
  • Choi S.C., Ingale S.L., Kim J.S., Park Y.K., Kwon I.K., Chae B.J., 2013b. An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br. Poult. Sci. 54, 738–746, https://doi.org/10.1080/00071668.2013.838746
  • Dunislawska A., Slawinska A., Stadnicka K., Bednarczyk M., Gulewicz P., Jozefiak D., SiwekM., 2017. Synbiotics for broiler chickens – in vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PLoS ONE 12, e0168587, https://doi.org/10.1371/journal.pone.0168587
  • Dutta P.K., Dutta J., Tripathi V.S., 2004. Chitin and chitosan: chemistry, properties and applications. J. Sci. Ind. Res. 63, 20–3
  • Egorova T.A., Lenkova T.N., Il’ina L.A. et al., 2016. The Saccharomyces sp. and Bacillus subtilis based probiotics influence on chicken broiler productivity and caecum microbiome community. Agric. Biol. 51, 891–902, https://doi.org/10.15389/agrobiology.2016.6.891eng
  • Hwangbo J., Hong E.C., Jang A., Kang H.K., Oh J.S., Kim B.W., Park B.S., 2009. Utilization of house fly-maggots, a feed supplement in the production of broiler chickens. J. Environ. Biol. 30, 609–614
  • Józefiak A., Engberg R.M., 2017. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci. 26, 87–99, https://doi.org/10.22358/jafs/69998/2017
  • Józefiak D., Józefiak A., Kierończyk B., Rawski M., Świątkiewicz S., Długosz J., Engberg R.M., 2016. Insects – a natural nutrient source for poultry – a review. Ann. Anim. Sci. 16, 297–313, https://doi.org/10.1515/aoas-2016-0010
  • Józefiak D., Kierończyk B., Juśkiewicz J., Zduńczyk Z., Rawski M., Długosz J., Sip A., Højberg O., 2013. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS ONE 8, e85347, https://doi.org/10.1371/journal.pone.0085347
  • Józefiak D., Sip A., Rawski M., Rutkowski A., Kaczmarek S., Hojberg O., Jensen B.B., Engberg R.M., 2011. Dietary divercin modifies gastrointestinal microbiota and improves growth performance in broiler chickens. Br. Poult. Sci. 52, 492–499, https://doi.org/10.1080/00071668.2011.602963
  • Józefiak D., Sip A., Rutkowski A., Rawski M., Kaczmarek S., WołuńCholewa M., Engberg R.M., Højberg O., 2012. Lyophilized
  • Carnobacterium divergens AS7 bacteriocin preparation improves performance of broiler chickens challenged with Clostridium perfringens. Poult. Sci. 91, 1899–1907, https://doi.org/10.3382/ps.2012-02151
  • Józefiak D., Świątkiewicz S., Kierończyk B., Rawski M., Długosz J., Engberg R.M., Højberg O., 2016. Clostridium perfringens challenge and dietary fat type modifies performance, microbiota composition and histomorphology of the broiler chicken gastrointestinal tract. Eur. Poult. Sci. 80, https://doi.org/10.1399/eps.2016.130
  • Kierończyk B., Pruszyńska-Oszmałek E., Świątkiewicz S., Rawski M., Długosz J., Engberg R.M., Józefiak D., 2016. The nisin improves broiler chicken growth performance and interacts with salinomycin in terms of gastrointestinal tract microbiota composition. J. Anim. Feed Sci. 25, 309–316, https://doi.org/10.22358/jafs/67802/2016
  • Lay C., Sutren M., Rochet V., Saunier K., Doré J., Rigottier-Gois L., 2005. Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ. Microbiol. 7, 933–946, https://doi.org/10.1111/j.1462-2920.2005.00763.x
  • Loughrey A.G., 1951. A food-habit study of juvenile ring-necked pheasants on Pelee Island, Ontario. MSc Thesis. The University of Western Ontario. London, Ontario (Canada)
  • Makkar H.P.S., Tran G., Heuzé V., Ankers P., 2014. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 197, 1–33, https://doi.org/10.1016/j.anifeedsci.2014.07.008
  • Maurer V., Holinger M., Amsler Z., Früh B., Wohlfahrt J., Stamer A., Leiber F., 2015. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J. Insects Food Feed 2, 83–90, https://doi.org/10.3920/JIFF2015.0071
  • Pan D., Yu Z., 2014. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes 5, 108–119, https://doi.org/10.4161/gmic.26945
  • Park S.-I., Chang B.S., Yoe S.M., 2014. Detection of antimicrobial substances from larvae of the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Entomol. Res. 44, 58–64, https://doi.org/10.1111/1748-5967.12050
  • Pretorius Q., 2011. The evaluation of larvae of Musca domestica (common house fly) as protein source for broiler production. MSc Thesis. Stellenbosch University. Stellenbosch (South Africa)
  • Ptak A., Bedford M.R., Świątkiewicz S., Żyła K., Józefiak D., 2015. Phytase modulates ileal microbiota and enhance growth performance of the broiler chickens. PLoS ONE 10, e0119770, https://doi.org/10.1371/journal.pone.0119770
  • Rumble M.A., Anderson S.H., 1996. Feeding ecology of Merriam’s turkeys (Meleagris gallopavo merriami) in the Black Hills, South Dakota. Am. Midl. Nat. 136, 157–171, https://doi.org/10.2307/2426641
  • Salanitro J.P., Blake I.G., Muirehead P.A., Maglio M., Goodman J.R., 1978. Bacteria isolated from the duodenum, ileum, and cecum of young chicks. Appl. Environ. Microbiol. 35, 782–790
  • Stanley D., Hughes R.J., Moore R.J., 2014. Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol. 98, 4301–4310, https://doi.org/10.1007/s00253-014-5646-2
  • Wang D., Zhai S.W., Zhang C.X., Bai Y.Y., An S.H., Xu Y.N., 2005. Evaluation on nutritional value of field crickets as a poultry feedstuff. Asian-Australas. J. Anim. Sci. 18, 667–670, https://doi.org/10.5713/ajas.2005.667
  • Wen L.-F., He J.-G., 2012. Dose-response effects of an antimicrobial peptide, a cecropin hybrid, on growth performance, nutrient utilisation, bacterial counts in the digesta and intestinal morphology in broilers. Br. J. Nutr. 108, 1756–1763, https://doi.org/10.1017/S0007114511007240
  • Xiao H., Shao F., Wu M., Ren W., Xiong X., Tan B., Yin Y., 2015. The application of antimicrobial peptides as growth and health promoters for swine. J. Anim. Sci. Biotechnol. 6, 19, https://doi.org/10.1186/s40104-015-0018-z
  • Yi H.-Y., Chowdhury M., Huang Y.-D., Yu X.-Q., 2014. Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol. 98, 5807–5822, https://doi.org/10.1007/s00253-014-5792-6
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a6e55135-2848-4d0a-9b56-48412dcf742d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.