PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 16 | 2 |

Tytuł artykułu

MHC-DRB exon 2 diversity of the Jamaican fruit-eating bat (Artibeus jamaicensis) from Mexico

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Major Histocompatibility Complex (MHC) encodes a group of closely linked genes that play a central role in the vertebrate immune system, those are crucial for understanding the influence of natural selection on genetic diversity in wild populations. We examined genetic variation at the MHC class II DRB gene in 15 sampled localities of the Jamaican fruit-eating bat (Artibeus jamaicensis) in Mexico. Artibeus jamaicensis is one of the most abundant and widely distributed species in the Neotropics, and is therefore an excellent species in which to examine immunological gene variation. Using PCR amplifications, cloning and sequencing, we assessed individual DRB allelic diversity. Sequences from 193 individuals were analyzed and no deletions or insertions were detected, thus likely representing functional alleles. We identified 161 alleles (allele diversity = 0.9789 0.0022), with three to five alleles per individual, suggesting gene duplication events. Our results suggest the presence of recombination involved with generating DRB diversity in A. jamaicensis; we detected one recombination breakpoint and one recombination event. In the antigen-binding site (ABS), the average number of nonsynonymous substitutions per site is greater than the synonymous substitutions per site (0.7033 versus 0.2966, respectively) providing evidence for positive selection acting above the evolutionary history of the species in shaping MHC diversity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

16

Numer

2

Opis fizyczny

p.301-314,fig.,ref.

Twórcy

  • Laboratorio de Bioconservacion y Manejo, Departamento de Zoologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plant de Ayala s/n, Col. Sto. Tomas, 11340 Mexico D.F., Mexico
  • Laboratorio de Bioconservacion y Manejo, Departamento de Zoologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plant de Ayala s/n, Col. Sto. Tomas, 11340 Mexico D.F., Mexico
autor
  • Laboratorio de Bioconservacion y Manejo, Departamento de Zoologia, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Prolongacion de Carpio y Plant de Ayala s/n, Col. Sto. Tomas, 11340 Mexico D.F., Mexico

Bibliografia

  • 1. R. Agudo , M. Alcaide , C. Rico , J. A. Lemus , G. Blanco , F. Hiraldo , and J. A. Donázar . 2011. Major histocompatibility complex variation in insular populations of the Egyptian vulture: inferences about the roles of genetic drift and selection. Molecular Ecology, 20: 2329–2340. Google Scholar
  • 2. M. Alcaide , S. V. Edwards , J. J. Negro , D. Serrano , and J. Tella . 2008. Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Molecular Ecology, 17: 2652–2665. Google Scholar
  • 3. S. Aljanabi , and I. Martinez . 1997. Universal and rapid salt extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acid Research, 25: 4692–4693. Google Scholar
  • 4. L. Allen , A. Turmelle , M. Mendonca , K. Navara , T. H. Kunz , and F. McCracken . 2008. Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). Journal of Comparative Physiology, 179B: 315-323. Google Scholar
  • 5. S J. Anthony , R. Ojeda-Flores , O. Rico-Chávez , I. Navarrete-Macias , C. M. Zambrana-Torrelio , M. K. Rostal , J. H. Epstein , T. Tipps , E. Liang , M. Sanchez-Leon , et al. 2013. Coronavimses in bats from Mexico. Journal of General Virology, 94: 1028–1038. Google Scholar
  • 6. W. Babik 2010. Methods for MHC genotyping in non-model vertebrates. Molecular Ecology Resources, 10: 237–251. Google Scholar
  • 7. W. Babik , M. Pabijan , and J. Radwan . 2008. Contrasting patterns of variation in MHC loci in the alpine newt. Molecular Ecology, 17: 2339–2355. Google Scholar
  • 8. L. Bernatchez , and C. Landry . 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? Journal of Evolutionary Biology, 16: 363-377. Google Scholar
  • 9. M. F. Boni , D. Posada , and M. W. Feldman . 2007. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics, 176: 1035–1047. Google Scholar
  • 10. J. H. Brown , T. S. Jardetzky , J. C. Gora , L. J. Stern , R. G. Urban , J. L. Strominger , and D. C. Wiley . 1993. Tree-dimensional structure of de human class II histocompatibility antigen HLA-DR1. Nature, 364: 33–39. Google Scholar
  • 11. J. Bryja , N. Charbonnel , K. Berthier , M. Galan , and J. F. Cosson . 2007. Density-related changes in selection pattem for major histocompatibility complex genes in fluctuating populations of voles. Molecular Ecology, 16: 5084–5097. Google Scholar
  • 12. L. F. Cadavid , and Watkins . 1997. Minireview: the duplicative nature of the MHC Class I genes: an evolutionary perspective. European Journal of Immunogenetics, 24: 313–322. Google Scholar
  • 13. K. Cammen , J. I. Hoffman , L. A. Knapp , J. Harwood , and W. Amos . 2011. Geographic variation of the major histocompatibility complex in Eastern Atlantic grey seals (Halichoerus grypus). Molecular Ecology, 20: 740–752. Google Scholar
  • 14. V. Cottontail , E. K. V. Kalko , I. Cottontail , N. Wellinghausen , M. Tschapka , S. L. Perkins , and C. M. Pinto . 2014. High local diversity of Trypanosoma in common bat species, and implications of biogeography and taxonomy of the T. cruzi clade. PLoS ONE, 9: e108603. Google Scholar
  • 15. E. Cue-Bar , J. C. Villaseñor , J. J. Monrroe , and G. Ibarra . 2006. Identifying priority areas for conservation in Mexican tropical deciduous forest base on tree species. Interciencia, 31: 712–719. Google Scholar
  • 16. A. Cutrera , and E. Lacey . 2006. Major histocompatibility complex variation in Talas tuco-tucos: the influence of demography on selection. Journal of Mammalogy, 87: 706–716. Google Scholar
  • 17. A. Cutrera , R. Zenuto , and E. Lacey . 2010. MHC variation, multiple simultaneous infections and physiological condition in the subterranean rodent Ctenomys talarum. Infection, Genetics and Evolution, 11: 1023–1036. Google Scholar
  • 18. D. Darriba , G. L. Taboada , R. Doallo , and D. Posada . 2012. jModelTest 2:more models, new heuristics and parallel computing. Nature Methods, 9: 772. Google Scholar
  • 19. J. G. de Bellocq , K. F. Suchentrunk , S. J. E. Baird , and H. Schaschl . 2009. Evolutionary history of an MHC gene in two leporid species: characterization of Mhc-DQA in the European brown hare and comparison with the European rabbit. Immunogenetics, 61: 131–144. Google Scholar
  • 20. S. V. Edwards , K. Chesnut , Y. Satta , and E. K. Wakeland . 1997. Ancestral polymorphism of MHC class II genes in mice: implications for balancing selection and the mammalian molecular clock. Genetics, 146: 655-668. Google Scholar
  • 21. R. Ekblom , S. A. Seather , P. Jacobsson , P. Fiske , T. Sahlman , M. Grahn , J. A. Kalas , and J. Höglund . 2007. Spatial pattern of MHC class II variation in the great snipe (Galllinago media). Molecular Ecology, 16: 1439–1451. Google Scholar
  • 22. J. G. Elizabeth , R. A. Oliver , and G. C. Russell . 2000. Duplicated DQ haplotypes increase the complexity of restriction element usage in cattle. Journal of Immunology, 165: 134–138. Google Scholar
  • 23. S. Ellis , R. Bontrop , D. Antczak , K. Ballingall , J. Davies , J. Kaufman , J. Kennedy , J. Robinson , M. Smith , M. Stear , et al. 2006. ISAG/IUIS-VIC Comparative MHC Nomenclature Committee report. Immunogenetics, 57: 953–958. Google Scholar
  • 24. L. Excoffier , P. Smouse , and J. Quattro . 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479–491. Google Scholar
  • 25. L. Excoffier , G. Laval , and S. Schneider . 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformartics Online, 1: 47–50. Google Scholar
  • 26. R. Germain 1994. MHC-Dependent antigen processing and peptide presentation: providing ligands for lymphocyte activation. Cell, 76: 287–299. Google Scholar
  • 27. L. Heath , E. van der Walt , A. Varsani , and D. P. Martin . 2006. Recombination patterns in aphthoviruses mirror those found in other picornavirases. Journal of Virology, 80: 11827–11832. Google Scholar
  • 28. A. Hughes , and M. Nei . 1988. Pattem of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature, 33: 167–170. Google Scholar
  • 29. K. J. M. Jeffery , and C. R. M. Bangham . 2000. Do infectious diseases drive MHC diversity? Microbes and Infection. 2: 1335-1341. Google Scholar
  • 30. T. H. Jukes , and C. R. Cantor . 1969. Evolution of protein molecules. Pp. 21-132, in Mammalian protein metabolism (H. N. Munroe , ed.). Academic Press, New York, iv + 728 pp. Google Scholar
  • 31. J. Klein , and C. O'hUgin . 1993. Composite origin of major histocompatibility complex genes. Current Opinion in Genetics & Development, 3: 923–930. Google Scholar
  • 32. J. Klein , A. Sato , and N. Nikolaidis . 2007. MHC, TSP and the origin of species: form immunogenetic to evolutionary genetics. Annual Review of Genetics, 4: 281–304. Google Scholar
  • 33. S. L. Kosakovsky , D. Posada , M. B Gravenor , C. H. Woelk , and S. D. W. Frost . 2006. Detection of recombination using a genetic algorithm. Molecular Biology and Evolution 23: 1891–1901 Google Scholar
  • 34. P. A. Larsen , S. R. Hoofer , M. C. Bonzeman , S. C. Pedersen , H. H. Genoways , C. J. Phillips , D. E. Pumo , and R. J. Baker . 2007. Phylogenetics and phylogeography of the Artibeus jamaicensis complex based on cytochrome-6 DNA sequences. Journal of Mammalogy, 88: 712–727. Google Scholar
  • 35. P. A. Larsen , M. R. Marchán-Rivadeneira , and R. J. Baker . 2010. Taxonomic status of Andersen's fruit-eating bat (Artibeus jamaicensis aequatorialis) and revised classification of Artibeus (Chiroptera: Phyllostomidae). Zootaxa, 2648: 45–60. Google Scholar
  • 36. D. Lukas , B. J. Bradley , A. M. Nsubuga , D. Doran-Sheehy , M. M. Robbins , and L. Vigilant . 2004. Major histocompatibility complex and microsatellite variation in two populations of wild gorillas. Molecular Ecology, 13: 3389–3402. Google Scholar
  • 37. M. MacManes , and E. A. Lacey . 2012. Is promiscuity associated with enhanced selection on MHC-DQa in mice (genus Peromyscus)? PLoS ONE. 5: e37562 Google Scholar
  • 38. F. Mayer , and A. Brunner . 2007. Non-neutral evolution of the major histocompatibility complex class II gene DRB1 in the sac-winged bat Saccopteryx bilineata. Heredity, 99: 257–264. Google Scholar
  • 39. R. A. Medellín , M. Equihua , and M. Amin . 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology, 14: 1666–1675. Google Scholar
  • 40. R. A. Medellín , H. Arita , and O. Sánchez . 2008. Identificación de los murciélagos de México, clave de campo. Instituto de Ecología, UNAM, México, D.F., 79 pp. Google Scholar
  • 41. S. Mona , B. Crestanello , S. Bankhead-Dronnet , E. Pecchioli , S. Ingrosso , S. D'Amelio , L. Rossi , P.G. Meneguz , and G. Bertorelle . 2008. Disentangling the effects of recombination, selection, and demography on the genetic variation at a major histocompatibility complex class II gene in the alpine chamois. Molecular Ecology, 17: 4053–4067. Google Scholar
  • 42. K. Nadachowska-Brzyska , P. Zielinski , J. Radwan , and W. Babik . 2012. Intraspecific hybridization increases MHC class II diversity in two sister species of newts. Molecular Ecology, 21: 887–906. Google Scholar
  • 43. M. Nei , and T. Gojobori . 1986. Simple methods for estimating the numbers of synonymous and non-synonymous substitutions. Molecular Biology and Evolution, 3: 418–426. Google Scholar
  • 44. M. K. Oliver , S. Telfer , and S. B. Piertney . 2009. Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proceedings of the Royal Society, 276B: 1119-1128. Google Scholar
  • 45. C. Oppelt , R. Wutzler , and D. Von Holst . 2010. Characterization of MHC class II DRB genes in the northern tree shrew (Tupaia belangeri). Immunogenetics. 9: 613–622. Google Scholar
  • 46. J. Ortega , and I. Castro-Arellano . 2001. Artibeus jamaicensis. Mammalian Species, 662: 1–9. Google Scholar
  • 47. J. Ortega , E. Maldonado , H. Arita , G. Wilkinson , and R. Fleischer . 2002. Characterization of microsatellite loci in the Jamaican fruit-eating bat Artibeus jamaicensis and crossspecies amplification. Molecular Ecology Notes, 2: 462–464. Google Scholar
  • 48. N. Otting , N. G. de Groot , G. G. Doxiadis , and R. E. Bontrop . 2002. Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics, 54: 230–239. Google Scholar
  • 49. M. Padidam , S. Sawyer , and C. M. Fauquet . 1999. Possible emergence of new geminiviruses by frequent recombination. Virology, 265: 218–225. Google Scholar
  • 50. S. B. Piertney , and M. K. Oliver . 2006. The evolutionary ecology of the major histocompatibility complex. Heredity, 96: 7–21. Google Scholar
  • 51. D. Posada , and K. A. Crandall . 2001. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences of the USA, 98: 13757–13762. Google Scholar
  • 52. A. Richman , L. Herrera , S. Ortega-García , J. Flores-Martínez , J. Arroyo-Cabrales , and J. Morales-Malacara . 2010. Class II DRB polymorphism and sequence diversity in two vesper bats in the genus Myotis. Immunogenetics, 37: 401–405. Google Scholar
  • 53. F. Ronquist , and P. Hueslsenbeck . 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics Applications Note, 19: 1572–1574. Google Scholar
  • 54. J. Rozas , and P. Librado . 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451–1452. Google Scholar
  • 55. J. Schad , D. K. N. Dechmann , C. C. Voigt , and S. Sommer . 2011. MHC class II DRB diversity, selection pattern and population structure in a neotropical bat species, Noctilio albiventris. Heredity, 107: 115–126. Google Scholar
  • 56. J. Schad , C. C. Voigt , S. Greiner , D. K. N. Dechmann , and S. Sommer . 2012. Independent evolution of functional MHC class II DRB genes in New World bat species. Immunogenetics, 64: 535–547. Google Scholar
  • 57. H. Schaschl , P. Wandeler , F. Suchentrunk , G. Obeser-Ruff , and S. J. Goodman . 2006. Selection and recombination drive the evolution of MHC class II DRB diversity in ungulates. Heredity, 97: 427–437. Google Scholar
  • 58. N. Schwensow , J. Fietz , K. Dausmann , and S. Sommer . 2007. Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity, 99: 265–277. Google Scholar
  • 59. R. S. Sikes , W. L. Gannon , and The Animal Care Use Committee of The American Society of Mammalogists. 2011. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. Journal of Mammalogy, 92: 235–253. Google Scholar
  • 60. M. J. Smith 1992. Analyzing the mosaic structure of genes. Journal of Molecular Evolution, 34: 126–12. Google Scholar
  • 61. S. Sommer 2005. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology, 2: 18. Google Scholar
  • 62. G. L. Spuring , and D. S. Richardson . 2010. How pathogens drive genetic diversity: MHC mechanisms and misunderstandings. Proceedings of the Royal Society. 277B: 979-988. Google Scholar
  • 63. K. Tamura , D. Peterson , N. Peterson , G. Stecher , M. Nei , and S. Kumar . 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28: 2731–2739. Google Scholar
  • 64. R. C. Teixeira , C. E. Correa , and E. Fisher . 2009. Frugivory by Artibeus jamaicensis (Phyllostomidae) in the Pantanal Brazil. Studies on Neotropical Fauna and Enviroment, 44: 7–15. Google Scholar
  • 65. E. Vázquez-Domínguez , A. Mendoza-Martínez , L. Orozco-Lugo , and A. Cuarón . 2013. High dispersal generalist habits of the bat Artibeus jamaicensis on Cozumel Islands, Mexico: an assessment using molecular genetics. Acta Chiropterologica, 15: 411–421. Google Scholar
  • 66. K. M. Wegner , M. Kalbe , H. Schaschl , and T. H. Reusch . 2004. Parasites and individual major histocompatibility complex diversity — an optimal choice? Microbes and Infection. 6: 1110-1116. Google Scholar
  • 67. G. Yang , J. Yan , K. Zhou , and F. Wei . 2005. Sequence variation and gene duplication at MHC DQB loci of baiji (Lipotes vexillifer), a Chinese river dolphin. Journal of Heredity, 96: 310–317. Google Scholar
  • 68. Z. Yang 2007. Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24: 1586–1591. Google Scholar
  • 69. M. Zhang , and H. He . 2013. Parasite-mediated selection of major histocompatibility complex variability in wild Brandt's vole (Lasiopodomys brandtii) from inner Mongolia, China. BMC Evolutionary Biology, 13: 149. Google Scholar

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a67d6e07-201f-427a-a985-afde355c79e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.