PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 11 |

Tytuł artykułu

Effect of sulphate nutrition on arsenic translocation and photosynthesis of rice seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The effect of sulphate nutrition on arsenic (As) concentration, photosynthetic and chlorophyll fluorescence parameters of rice was investigated in hydroponically grown rice seedlings (Oryza sativa L.), using three sulphate levels (1.8 μM, 0.7 mM, or 1.5 mM). The results showed that sulphate deficiency decreased As accumulation in root, but increased the translocation of As from root to shoot. Sulphate deficiency reduced maximum quantum yield (Fv/Fm), minimum fluorescence and electron transport rate (ETR) of a dark-adapted leaf. Compared with low sulphate treatments (1.8 μM), significant increases were observed in the parameters of rapid light curves, rETRmax and I k of photosystem I (PSI) and photosystem II (PSII) of rice grown in the high sulphate treatments (1.5 mM) regardless of As additions. Therefore, an adequately high sulphate supply may result in less As translocation from root to shoot, and protecting the reaction pathways of PSI and PSII of rice seedlings grown in higher As-contaminated medium.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

11

Opis fizyczny

p.3237-3243,fig.,ref.

Twórcy

autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China
autor
  • Zealquest Laboratory, Zealquest Scientific Technology Co. Ltd, Shanghai 200333, China
autor
  • Key Laboratory of Physiology, Ecology and Genetic Improvement of Food Crops in Henan Province, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, China
  • Key Laboratory of Crop Physiological Ecology and Farming System, Huanghuaihai, Ministry of Agriculture, Zhengzhou 450002, Henan, China

Bibliografia

  • Cao X, Ma LQ, Tu C (2004) Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese barke fern (Pteris vittata L.). Environ Pollut 128:317–325
  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486
  • Clemens S, Kim E, Neumann D, Schroeder J (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333
  • Cruz S, Serôdio J (2008) Relationship of rapid light curves of variable fluorescence to photoacclimation and non-photochemical quenching in a benthic diatom. Aquat Bot 88:256–264
  • Fan JL, Hu ZY, Ziadi N, Xia X, Wu CYH (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice. Environ Pollut 158:409–415
  • Filek M, Kościelniak J, Łabanowska M, Bednarska E, Bidzińska E (2010) Selenium-induced protection of photosynthesis activity in rape (Brassica napus) seedlings subjected to cadmium stress. Fluorescence and EPR measurements. Photosynth Res 105:27–37
  • Gusman GS, Oliveira JA, Farnese FS, Cambraia J (2013) Arsenate and arsenite: the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol Plant 35:1201–1209
  • Hans-Walter H (1997) Plant biochemistry and molecular biology. New York, Oxford
  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell Environ 24:713–722
  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, Farnham Royal
  • Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effect of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42:357–364
  • Karimi N, Ghaderian SM, Raab A, Feldmann J, Meharg AA (2009) An arsenic-accumulating, hypertolerant brassica, Isatis capadocia. New Phytol 184:41–47
  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218
  • Li WX, Chen TB, Huang ZC, Lei M, Liao XY (2006) Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. Chemosphere 62:803–809
  • Liao XY, Chen TB, Xie H, Liu YR (2005) Soil as contamination and its risk assessment in areas near the industrial districts of Chenzhou City, Southern China. Environ Int 31:791–798
  • Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? J Exp Bot 55:1703–1713
  • Liu WJ, Wood BA, Raab A, McGrath SP, Zhao FJ, Feldmann J (2010) Complexation of arsenite with phytochelatins reduces arsenite efflux and translocation from roots to shoots in Arabidopsis. Plant Physiol 152:2211–2221
  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43
  • Meharg AA, Rahman M (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37:229–234
  • Nocito FF, Pirovano L, Cocucci M, Sacchi GA (2002) Cadmiuminduced sulfate uptake in maize roots. Plant Physiol 129:1872–1879
  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian J, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141:1138–1148
  • Raab A, Schat H, Meharg AA, Feldmann J (2005) Uptake, translocation and transformation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic–phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558
  • Raab A, Ferreira K, Meharg AA, Feldmann J (2007) Can arsenicphytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot 58:1333–1338
  • Roháček K (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40:13–29
  • Schnettger B, Critchley C, Santore UJ (1994) Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effect of protein synthesis. Plant Cell Environ 17:55–64
  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: George CP, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 219–319
  • Srivastava S, D’Souza SF (2009) Increasing sulfur supply enhances tolerance to arsenic and its accumulation in Hydrilla verticillata (L.f.) Royle. Environ Sci Technol 43(16):6308–6313
  • Srivastava S, D’Souza SF (2010) Effect of variable sulfur supply on arsenic tolerance and antioxidant responses in Hydrilla verticillata (L.f.) Royle. Ecotox Environ Safe 73:1314–1322
  • Tuli R, Chakrabarty D, Trivedi PK, Tripathi RD (2010) Recent advances in arsenic accumulation and metabolism in rice. Mol Breed 26:307–323
  • Vassilev A, Manolov P (1999) Chlorophyll fluorescence of barley (Hordeum vulgare L.) seedlings growing in excess of Cd. Bulg J Plant Physiol 23:67–76
  • Wan GL, Najeeb U, Jilani G, Naeem MS, Zhou WJ (2011) Calcium in vigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut R 18:1478–1486
  • Wang LH, Duan GL, Williams PN, Zhu YG (2008) Influences of phosphorus starvation on OsACR2.1 expression and arsenic metabolism in rice seedlings. Plant Soil 313:129–139
  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599
  • Zhang X, Lin AJ, Zhao FJ, Xu GZ, Duan GL, Zhu YG (2008) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliana and A. filiculoides. Environ Pollut 156:1149–1155
  • Zhang J, Chang QX, Sun CF, Duan GL, Zhao QZ (2011a) HPLC assay of phytochelatins in rice root under cadmium or arsenic stress. Acta Sci Circumst 31:1550–1555 (in Chinese)
  • Zhang J, Zhao QZ, Duan GL, Huang YC (2011b) Influence of sulphur on arsenic accumulation and metabolism in rice seedlings. Environ Exp Bot 72:34–40
  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contamination: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:71–725
  • Zhu YG, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotech 20:220–224

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a64caa9d-9918-4e7b-92b6-99297ab80939
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.