PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 2 |

Tytuł artykułu

The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this review we will discuss different ways for re-establishing serotonergic activity that can enhance recovery of coordinated plantar stepping after spinal cord injury in adult rats. It is well known that serotoninergic neurons located in the medulla are able to initiate locomotor activity. This effect is exerted by actions on motoneurons and on neurons of the locomotor CPG (Central Pattern Generator). Motoneuron and interneuron excitability is increased, and putative CPG interneurons display oscillatory behaviour in response to serotonin receptor activation. The medullary serotonergic nuclei play multiple roles in the control of locomotion, and they terminate on specific target neurons with different types of serotonergic receptors in the spinal cord. Activation of these serotonergic receptors can restore locomotor movements after spinal cord injury. Specifically, using defined serotonergic agonists the 5-HT2 receptors can be stimulated to control CPG activation as well as motoneuron output, while 5-HT7 receptors to control activity of the locomotor CPG. These results are consistent with the roles for these receptors during locomotion in intact rodents and in rodent brainstem-spinal cord in vitro preparations. The other possibility to encourage the remaining spinal cord circuitry below the total transection to control recovery of plantar hindlimb stepping is restoration of serotonergic innervation by intraspinal grafting of embryonic 5-HT neurons. Our data show that grafting of different populations of 5-HT neurons dissected from embryonic brainstem provides differential control over multiple components of the spinal locomotor circuitry through specific serotonin receptors. Moreover, we demonstrated that the best effect of motor recovery is obtained after grafting of neurons destined to form the B1, B2 and B3 descending 5-HT systems. Using only one of the subpopulations for intraspinal grafting, for example, B3 or the lateral group of 5-HT neurons, induces only partial recovery of plantar stepping with a clear lack of proper interlimb coordination. This confirms the hypothesis that transplantation of 5-HT neurons from specific embryonic sources is necessary to obtain optimal recovery of locomotor hindlimb movement.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

2

Opis fizyczny

p.172-187,fig.,ref.

Twórcy

autor
  • Laboratory of Neuromuscular Plasticity, Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
autor
  • Laboratory of Neuromuscular Plasticity, Department of Neurophysiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
autor
  • Department of Physiology, Spinal Cord Research Centre, University of Manitoba, Winnipeg MB, Canada

Bibliografia

  • Antri M, Barthe JY, Mouffle C, Orsal D (2005) Long-lasting recovery of locomotor function in chronic spinal rat fol¬lowing chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine. Neurosci Lett 384: 162-167.
  • Antri M, Mouffle C, Orsal D, Barthe JY (2003) 5-HT1A receptors are involved in short- and long-term processes responsible for 5-HT-induced locomotor function recov¬ery in chronic spinal rat. Eur J Neurosci 18: 1963¬1972.
  • Antri M, Orsal D, Barthe JY (2002) Locomotor recovery in the chronic spinal rat: effects of long-term treatment with a 5-HT2 agonist. Eur J Neurosci 16: 467-476.
  • Bang SJ, Jensen P, Dymecki SM, Commons KG (2012) Projections and interconnections of genetically defined serotonin neurons in mice. Eur J Neurosci 35: 85-96.
  • Barbeau H, McCrea DA, O'Donovan MJ, Rossignol S, Grill WM, Lemay MA (1999) Tapping into spinal circuits to restore motor function. Brain Res Brain Res Rev 30: 27-51.
  • Beato M, Nistri A (1998) Serotonin-induced inhibition of locomotor rhythm of the rat isolated spinal cord is medi¬ated by the 5-HT1 receptor class. Proc Biol Sci 265: 2073-2080.
  • Boulenguez P, Vinay L (2009) Strategies to restore motor functions after spinal cord injury. Curr Opin Neurobiol 19: 587-600.
  • Bretzner F, Brownstone RM (2013) Lhx3-Chx10 reticu¬lospinal neurons in locomotor circuits. J Neurosci 33: 14681-14692.
  • Brustle O, Jones KN, Learish RD, Karram K, Choudhary K, Wiestler OD, Duncan ID, McKay RD (1999) Embryonic stem cell-derived glial precursors: a source of myelinat- ing transplants. Science 285: 754-756.
  • Carlin KP, Dai Y, Jordan LM (2006) Cholinergic and serotonergic excitation of ascending commissural neurons in the thoraco-lumbar spinal cord of the neonatal mouse. J Neurophysiol 95: 1278-1284.
  • Cordes SP (2005) Molecular genetics of the early develop¬ment of hindbrain serotonergic neurons. Clin Genet 68: 487-494.
  • Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into func¬tional states after the loss of brain input. Nat Neurosci 12: 1333-1342.
  • Dai X, Noga BR, Douglas JR, Jordan LM (2005) Localization of spinal neurons activated during locomotion using the c-fos immunohistochemical method. J Neurophysiol 93: 3442-3452.
  • Dai Y, Carlin KP, Li Z, McMahon DG, Brownstone RM, Jordan LM (2009) Electrophysiological and pharmaco¬logical properties of locomotor activity-related neurons in cfos-EGFP mice. J Neurophysiol 102: 3365-3383.
  • de Leon RD, Kubasak MD, Phelps PE, Timoszyk WK, Reinkensmeyer DJ, Roy RR, Edgerton VR (2002) Using robotics to teach the spinal cord to walk. Brain Res Brain Res Rev 40: 267-273.
  • Delvolve I, Gabbay H, Lev-Tov A (2001) The motor output and behavior produced by rhythmogenic sacrocaudal net¬works in spinal cords of neonatal rats. J Neurophysiol 85: 2100-2110.
  • Deshpande DM, Kim YS, Martinez T, Carmen J, Dike S, Shats I, Rubin LL, Drummond J, Krishnan C, Hoke A, Maragakis N, Shefner J, Rothstein JD, Kerr DA (2006) Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 60: 32-44. Dimitrijevic MR, Gerasimenko Y, Pinter MM (1998) Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860: 360-376.
  • Dobkin B, Barbeau H, Deforge D, Ditunno J, Elashoff R, Apple D, Basso M, Behrman A, Harkema S, Saulino M, Scott M (2007) The evolution of walking-related out¬comes over the first 12 weeks of rehabilitation for incom¬plete traumatic spinal cord injury: the multicenter ran¬domized Spinal Cord Injury Locomotor Trial. Neurorehabil Neural Repair 21: 25-35.
  • Dong S, Allen JA, Farrell M, Roth BL (2010) A chemical- genetic approach for precise spatio-temporal control of cellular signaling. Mol Biosyst 6: 1376-1380.
  • Dunbar MJ, Tran MA, Whelan PJ (2010) Endogenous extra¬cellular serotonin modulates the spinal locomotor net¬work of the neonatal mouse. J Physiol 588: 139-156.
  • Eaton MJ, Widerstrom-Noga E, Wolfe SQ (2011) Subarachnoid transplant of the human neuronal hNT2.19 serotonergic cell line attenuates behavioral hypersensi- tivity without affecting motor dysfunction after severe contusive spinal cord injury. Neurol Res Int 2011: 891605.
  • Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJ, Burdick JW, Roy RR (2008) Training locomotor net¬works. Brain Res Rev 57: 241-254.
  • Fong AJ, Roy RR, Ichiyama RM, Lavrov I, Courtine G, Gerasimenko Y, Tai YC, Burdick J, Edgerton VR (2009) Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face. Prog Brain Res 175: 393-418.
  • Fouad K, Rank MM, Vavrek R, Murray KC, Sanelli L, Bennett DJ (2010) Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. J Neurophysiol 104: 2975-2984.
  • Gal L, Pajer K, Nógradi A, Sławińska U (2012) Grafted embryonic motoneurons contribute to the coordinated functional improvement of denervated hindlimbs after motoneuron loss induced by ventral root avulsion. FENS Abstract, Vol. 6, p.132.05
  • Gao J, Coggeshall RE, Chung JM, Wang J, Wu P (2007) Functional motoneurons develop from human neural stem cell transplants in adult rats. Neuroreport 18: 565¬569.
  • Gao J, Coggeshall RE, Tarasenko YI, Wu P (2005) Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats. Neuroscience 131: 257-262.
  • Gerasimenko Y, Roy RR, Edgerton VR (2008) Epidural stimulation: comparison of the spinal circuits that gener¬ate and control locomotion in rats, cats and humans. Exp Neurol 209: 417-425.
  • Gimenez y Ribotta M, Provencher J, Feraboli-Lohnherr D, Rossignol S, Privat A, Orsal D (2000) Activation of loco¬motion in adult chronic spinal rats is achieved by trans¬plantation of embryonic raphe cells reinnervating a pre¬cise lumbar level. J. Neurosci. 20: 5144-5152.
  • Gordon IT, Whelan PJ (2006) Monoaminergic control of cauda-equina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 96: 3122-3129.
  • Guertin PA, Ung RV, Rouleau P, Steuer I (2011) Effects on locomotion, muscle, bone, and blood induced by a com¬bination therapy eliciting weight-bearing stepping in nonassisted spinal cord-transected mice. Neurorehabil Neural Repair 25: 234-242.
  • Hagglund M, Borgius L, Dougherty KJ, Kiehn O (2010) Activation of groups of excitatory neurons in the mam¬malian spinal cord or hindbrain evokes locomotion. Nat Neurosci 13: 246-252.
  • Harkema S, Gerasimenko Y, Hodes J, Burdick J, Angeli C, Chen Y, Ferreira C, Willhite A, Rejc E, Grossman RG, Edgerton VR (2011) Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, stand¬ing, and assisted stepping after motor complete paraple¬gia: a case study. Lancet 377: 1938-1947.
  • Hawthorne AL, Hu H, Kundu B, Steinmetz MP, Wylie CJ, Deneris ES, Silver J (2011) The unusual response of sero¬tonergic neurons after CNS Injury: lack of axonal dieback and enhanced sprouting within the inhibitory environ¬ment of the glial scar. J Neurosci 31: 5605-5616.
  • Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J (2009) Motoneuron excitability: the importance of neuro-modulator inputs. Clin Neurophysiol 120: 2040-2054.
  • Hochman S, Garraway SM, Machacek DW, Shay BL (2001) 5-HT receptors and the neuromodualatory control of spinal cord function. In: Motor Neurobiology of the Spinal Cord (Cope TC, Ed). CRC Press, New York, NY, p. 48-87.
  • Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR (2005) Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett 383: 339-344.
  • Imaizumi T, Lankford KL, Waxman SG, Greer CA, Kocsis JD (1998) Transplanted olfactory ensheathing cells remy- elinate and enhance axonal conduction in the demyeli- nated dorsal columns of the rat spinal cord. J Neurosci 18: 6176-6185.
  • Jensen P, Farago AF, Awatramani RB, Scott MM, Deneris ES, Dymecki SM (2008) Redefining the serotonergic system by genetic lineage. Nat Neurosci 11: 417-419.
  • Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of loco¬motion in mammals. Brain Res Rev 57: 183-191.
  • Jordan LM, Fabczak H, Kisielnicka E, Leszczyńska A, Majczyński H, Nagy JI, Sławińska U (2010) Segmental distribution of 5-HT2A and 5-HT2C receptor up-regula¬tion one month after complete spinal cord injury. Society for Neuroscience Meeting 2010, San Diego, CA. Program No. 259.20.
  • Jordan LM, Sławińska U (2011) Chapter 12--modulation of rhythmic movement: control of coordination. Prog Brain Res 188: 181-195.
  • Kaegi S, Schwab ME, Dietz V, Fouad K (2001) Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats. Eur J Neurosci 16: 249-258.
  • Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O (2005) Human embryonic stem cell- derived oligodendrocyte progenitor cell transplants remy- elinate and restore locomotion after spinal cord injury. J Neurosci 25: 4694-4705.
  • Kohama I, Lankford KL, Preiningerova J, White FA, Vollmer TL, Kocsis JD (2001) Transplantation of cryopreserved adult human Schwann cells enhances axonal conduction in demyelinated spinal cord. J Neurosci 21: 944-950.
  • Kong XY, Wienecke J, Hultborn H, Zhang M (2010) Robust upregulation of serotonin 2A receptors after chronic spi¬nal transection of rats: an immunohistochemical study. Brain Res 1320: 60-68.
  • Kong XY, Wienecke J, Chen M, Hultborn H, Zhang M (2011) The time course of serotonin 2A receptor expres¬sion after spinal transection of rats: an immunohis- tochemical study. Neuroscience 177: 114-126.
  • Landry ES, Lapointe NP, Rouillard C, Levesque D, Hedlund PB, Guertin PA (2006) Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur. J. Neurosci. 24: 535-546.
  • Lavrov I, Courtine G, Dy CJ, van den Brand R, Fong AJ, Gerasimenko Y, Zhong H, Roy RR, Edgerton VR (2008) Facilitation of stepping with epidural stimulation in spi¬nal rats: role of sensory input. J Neurosci 28: 7774¬7780.
  • Leblond H, L'Esperance M, Orsal D, Rossignol S (2003) Treadmill locomotion in the intact and spinal mouse. J Neurosci 23: 11411-11419.
  • Lev-Tov A, Delvolve I, Kremer E (2000) Sacrocaudal affer¬ents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats. J Neurophysiol 83: 888-894.
  • Liu J, Jordan LM (2005) Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor- like activity involving spinal 5-HT7 and 5-HT2A recep¬tors. J Neurophysiol 94: 1392-1404.
  • Liu J, Akay T, Hedlund PB, Pearson KG, Jordan LM (2009) Spinal 5-HT7 receptors are critical for alternating activity during locomotion: in vitro neonatal and in vivo adult studies using 5-HT7 receptor knockout mice. J Neurophysiol 102: 337-348.
  • Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, Czarkowska-Bauch J (2009) Exercise-induced motor improvement after complete spi¬nal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic mark¬ers. BMC Neurosci 10: 144.
  • Majczyński H, Maleszak K, Cabaj A, Sławińska U (2005) Serotonin-related enhancement of recovery of hind limb motor functions in spinal rats after grafting of embryonic raphe nuclei. J. Neurotrauma 22: 590-604.
  • Majczyński H, Maleszak K, Górska T, Sławińska U (2007) Comparison of two methods for quantitative assessment of unrestrained locomotion in the rat. J Neurosci Methods 163: 197-207.
  • Majczyński H, Sławińska U (2007) Locomotor recovery after thoracic spinal cord lesions in cats, rats and humans. Acta Neurobiol Exp (Wars) 67: 235-257.
  • Meisel RL, Rakerd B (1982) Induction of hindlimb stepping movements in rats spinally transected as adults or as neo- nates. Brain Res 240: 353-356.
  • Muir GD, Webb AA (2000) Mini-review: assessment of behavioural recovery following spinal cord injury in rats. Eur J Neurosci 12: 3079-3086.
  • Murray KC, Nakae A, Stephens MJ, Rank M, D'Amico J, Harvey PJ, Li X, Harris RL, Ballou EW, Anelli R, Heckman CJ, Mashimo T, Vavrek R, Sanelli L, Gorassini MA, Bennett DJ, Fouad K (2010) Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nature Medicine 16: 694-700.
  • Mushahwar VK, Gillard DM, Gauthier MJ, Prochazka A (2002) Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. IEEE Trans Neural Syst Rehabil Eng 10: 68-81.
  • Musienko P, van den Brand R, Marzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling Specific Locomotor Behaviors through Multidimensional Monoaminergic Modulation of Spinal Circuitries. J. Neurosci. 31: 9264-9278.
  • Navarrett S, Collier L, Cardozo C, Dracheva S (2012) Alterations of serotonin 2C and 2A receptors in response to T10 spinal cord transection in rats. Neurosci Lett 506: 74-78.
  • Nistor GI, Totoiu MO, Haque N, Carpenter MK, Keirstead HS (2005) Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation. Glia 49: 385-396.
  • Noga BR, Johnson DM, Riesgo MI, Pinzon A (2009) Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 102: 1560-1576.
  • Nogradi A, Vrbova G (1996) Improved motor function of denervated rat hindlimb muscles induced by embryonic spinal cord grafts. Eur J Neurosci 8: 2198-2203.
  • Norreel JC, Pflieger JF, Pearlstein E, Simeoni-Alias J, Clarac F, Vinay L (2003) Reversible disorganization of the locomotor pattern after neonatal spinal cord transec- tion in the rat. J Neurosci 23: 1924-1932.
  • Nygren LG, Olson L, Seiger A (1977) Mnoaminergic rein¬nervation of the transected spinal cord by homologous fetal brain grafts. Brain Res 129: 227-235.
  • Orsal D, Barthe JY, Antri M, Feraboli-Lohnherr D, Yakovleff A, Gimenez y Ribotta M, Privat A, Provencher J, Rossignol S (2002) Locomotor recovery in chronic spinal rat: long-term pharmacological treatment or transplanta¬tion of embryonic neurons? Prog Brain Res 137: 213¬230.
  • Pearlstein E, Ben Mabrouk F, Pflieger JF, Vinay L (2005) Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord. Eur J Neurosci 21: 1338-1346.
  • Pearlstein E, Bras H, Deneris ES, Vinay L (2011) Contribution of 5-HT to locomotion - the paradox of Pet-1(-/-) mice. Eur J. Neurosci 33: 1812-1822.
  • Pearse DD, Bunge MB (2006) Designing cell- and gene- based regeneration strategies to repair the injured spinal cord. J Neurotrauma 23: 438-452.
  • Perrier JF, Rasmussen HB, Christensen RK, Petersen AV (2013) Modulation of the intrinsic properties of motoneu¬rons by serotonin. Curr Pharm Des 19: 4371-4384.
  • Rajaofetra N, Konig N, Poulat P, Marlier L, Sandillon F, Drian MJ, Geffard M, Privat A (1992) Fate of B1-B2 and
  • B3 rhombencephalic cells transplanted into the transected spinal cord of adult rats: light and electron microscopic studies. Exp Neurol 117: 59-70. Rossi SL, Keirstead HS (2009) Stem cells and spinal cord regeneration. Curr Opin Biotechnol 20: 552-562.
  • Rossignol S, Frigon A (2011) Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci 34: 413-440.
  • Schmidt BJ, Jordan LM (2000) The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull 53: 689¬710.
  • Shimada T, Takai Y, Shinohara K, Yamasaki A, Tominaga- Yoshino K, Ogura A, Toi A, Asano K, Shintani N, Hayata-Takano A, Baba A, Hashimoto H (2012) A simpli¬fied method to generate serotonergic neurons from mouse embryonic stem and induced pluripotent stem cells. J Neurochem 122: 81-93.
  • Sławińska U, Jordan LM, Cabaj AM, Burger B, Fabczak H, Majczyński H (2012a) Locomotion of intact adult rats is controlled by 5-HT2A and 5-HT7 but not 5-HT2C recep¬tors. Society for Neuroscience Meeting, New Orleans, LA. Program No. 85.09
  • Sławińska U, Majczyński H, Dai Y, Jordan LM (2012b) The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats. J Physiol (Lond.) 590: 1721-1736.
  • Sławińska U, Majczyński H, Djavadian R (2000) Recovery of hindlimb motor functions after spinal cord transection is enhanced by grafts of the embryonic raphe nuclei. Exp Brain Res 132: 27-38.
  • Sławińska U, Miazga K, Cabaj AM, Leszczyńska AN, Majczyński H, Nagy JI, Jordan LM (2013) Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion. Exp Neurol 247: 572-581.
  • Sławińska U, Rossignol S, Bennett DJ, Schmidt BJ, Frigon A, Fouad K, Jordan LM (2012c) Comment on "Restoring voluntary control of locomotion after para¬lyzing spinal cord injury". Science 338: 328. [author reply p. 328]
  • Smith JC, Feldman JL, Schmidt BJ (1988) Neural mecha¬nisms generating locomotion studied in mammalian brain stem-spinal cord in vitro. Faseb J 2: 2283-2288.
  • Stedman's Medical Dictionary (2000) Lippincott, Williams, and Wilkins, Philadelphia, PA.
  • Tator CH, Minassian K, Mushahwar VK (2012) Spinal cord stimulation: therapeutic benefits and movement genera¬tion after spinal cord injury. Handb Clin Neurol 109: 283-296.
  • Tork I (1990) Anatomy of the serotonergic system. Ann N Y Acad Sci 600: 9-34; discussion 34-35.
  • Totoiu MO, Nistor GI, Lane TE, Keirstead HS (2004) Remyelination, axonal sparing, and locomotor recovery following transplantation of glial-committed progenitor cells into the MHV model of multiple sclerosis. Exp Neurol 187: 254-265.
  • Ung RV, Landry ES, Rouleau P, Lapointe NP, Rouillard C, Guertin PA (2008) Role of spinal 5-HT2 receptor sub¬types in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur J Neurosci 28: 2231-2242.
  • Volpi-Abadie J, Kaye AM, Kaye AD (2013) Serotonin Syndrome. Ochsner J 13: 533-540.
  • Vrbová G, Sławińska U (2012) Summary of strategies used to repair the injured spinal cord. In: Restorative Neurology of Spinal Cord Injury (Dimitrijevic MR, Kakulas BA, McKay WB, Vrbová G, Eds). Oxford University Press, Oxford, UK.
  • Whelan P, Bonnot A, O'Donovan MJ (2000) Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J Neurophysiol 84: 2821-2833.
  • Wiliams RR, Bunge MB (2012) Schwann cell transplanta¬tion: a repair strategy for spinal cord injury? Prog Brain Res 201: 295-312.
  • Zhang SX, Huang F, Gates M, White J, Holmberg EG (2010) Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury. J Neurosci Methods 187: 183-189.
  • Zhong G, Diaz-Rios M, Harris-Warrick RM (2006) Serotonin modulates the properties of ascending commissural interneurons in the neonatal mouse spinal cord. J Neurophysiol 95: 1545-1555.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a638e407-882e-4cc5-b192-63994fae0e9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.