PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

Effects of soil moisture and nickel contamination on microbial respiration rates in heavy metal-polluted soils

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Soil microorganisms may be both sensitive and resilient to various disturbances. The effects of a single stressor on soil microorganisms have been well studied, but only limited research has been carried out to test the effects of simultaneous action of diverse stressors. Soil samples were collected from a long-term polluted zinc and lead site and an unpolluted site. Modeling studies assumed spiking soils with five different concentrations of nickel (400, 800, 1.600, 3.200, and 6.400 mg Ni·kg⁻¹ dry weight soil) and their incubation under different humidity conditions (10%, 75%, and 120% of water holding capacity). We wanted to test if additional environmental disturbances have a different effect on microorganisms from polluted and unpolluted soils. The study showed that after 30 and 120 days of incubation, increasing Ni pollution inhibited microbial respiration rate (R), both in unpolluted and long-term metal polluted soils, irrespective of soil moisture. After 30 days of the experiment, microbial communities in both soils demonstrated a similar response to the additional toxicant. However, after 120 days of exposure to Ni, microbial communities from the unpolluted soil showed much higher inhibition of R than microbes from the polluted soils (p<0.001). The results might suggest that Ni co-tolerance mechanisms occurred in long-term metal polluted microbial communities.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1411-1418,fig.,ref.

Twórcy

  • Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
autor
  • Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland

Bibliografia

  • 1. DZIADOWIEC H. Ecological role of soil humus. Z. Pr. Post. N. Roln. 411, 269, 1993 [In Polish].
  • 2. ARAÙJO S. F., SANTOS V. B., MONTEIRO R. T. R. Responses of soil microbial biomass and activity for practices of organic and conventional farming systems in Piauí state, Brazil. Eur. J. Soil Biol. 44, (2), 225, 2008.
  • 3. KALLENBACH C., GRANDY A. S. Controls over soil microbial biomass responses to carbon amendments in agricultural systems: A meta-analysis. Agr. Ecosyst. Environ. 144, (1), 241, 2011.
  • 4. ZIMAKOWSKA-GNOIŃSKA D., BECH J., TOBIAS F.J. Assessment of the heavy metal pollution effects on the soil respiration in the Baix Llobregat (Catalonia, NE Spain). Environ. Monit. Assess. 61, 301, 2000.
  • 5. CONANT R. T., DALLA-BETTA P., KLOPATEK C. C., KLOPATEK J. M. Controls on soil respiration in semiarid soils. Soil Biol. Biochem. 36, 945, 2004.
  • 6. NIKLIŃSKA M., KLIMEK B. Effect of temperature on the respiration rate of forest soil organic layer along an elevation gradient in the Polish Carpathians. Biol. Fertil. Soils 43, 511, 2007.
  • 7. BROCKETT B. F. T., PRESCOTT C. E., GRAYSTON S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44, (1), 9, 2011.
  • 8. CHOWDHURY N., BURNS R. G., MARSCHNER P. Recovery of soil respiration after drying. Plant Soil 348, (1-2), 269, 2011.
  • 9. WEYMAN-KACZMARKOWA W. Moisture conditions and the development of bacterial communities in soil of contrasting texture. Appl. Soil Ecol. 4, 23, 1996.
  • 10. BÅÅTH E., ARNEBRANT K. Growth rate and response of bacterial communities to pH in limed and ash treated forest soils. Soil Biol. Biochem. 26, 995, 1994.
  • 11. STE-MARIE C., PARÉ D. Soil, pH and N availability effects on net nitrification in the forest floors of a range of boreal forest stands. Soil Biol. Biochem. 31, 1579, 1999.
  • 12. ROUSK J., BÅÅTH E., BROOKES P.C., LAUBER C.L., LOZUPONE C., CAPORASO J.G., KNIGHT R., FIERER N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4, (10), 1340, 2010.
  • 13. PENNANEN T. Microbial communities in boreal coniferous forest humus exposed to heavy metals and changes in soil pH - a summary of the use of phospholipid fatty acids, Biolog® and 3H-thymidine incorporation methods in field studies. Geoderma 100, 91, 2001.
  • 14. PERKIÖMÄKI J., TOM-PETERSEN A., NYBROE O., FRITZE H. Boreal forest microbial community after longterm field exposure to acid and metal pollution and its potential remediation by using wood ash. Soil Biol. Biochem. 35, (11), 1517, 2003.
  • 15. KANDELER E., TSCHERKO D., BRUCE K.D., STEMMER M., HOBBS P.J., BARDGETT R.D., AMELUNG W. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils 32, 390, 2000.
  • 16. POWERS J. S., SALUTE S. Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation. Plant Soil 346, (1-2), 245, 2011.
  • 17. NIKLIŃSKA M., CHMIEL M. Comparison of resistance to heavy metals in soil microorganisms from areas heavily contaminated with copper or zinc. In: Barabasz W. (Ed.) Microorganisms in the environment. Katedra Mikrobiologii Wydział Rolniczy Akademia Rolnicza im. Hugo Kołłątaja w Krakowie, Kraków. 491, 1997 [In Polish].
  • 18. GILLER K.E.,WITTER E., MCGRATH S. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol. Biochem. 30, 1389, 1998.
  • 19. KIZILKAYA R., ASKIN T., BAYRAKLI B., SAGLAM M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 40, 95, 2004.
  • 20. KABATA-PENDIAS A. Biogeochemistry of trace elements. PWN, Warszawa, 1999 [In Polish]
  • 21. GIKAS P. Single and combined effects of nickel (Ni(II)) and cobalt (Co(II)) ions on activated sludge and on other aerobic microorganisms: a review. J. Hazard. Mater. 159, (2-3), 187, 2008.
  • 22. WYSZKOWSKA J., WYSZKOWSKI M. Influence of nickel and magnesium on the multiplication of microorganisms in the soil under cultivation of yellow lupine. Rocz. Glebozn. B, 73, 2003 [In Polish].
  • 23. ANTIL R., GUPTA A., NARWAL R. Nitrogen transformation and microbial biomass content in soil contaminated with nickel and cadmium from industrial wastewater irrigation. Urban Water 3, (4), 299, 2001.
  • 24. TOBOR-KAPŁON M. A., BLOEM J., RÖMKENS P. F. A. M., DE RUITER P. C. Functional stability of microbial communities in contaminated soils. Oikos. 111, (1), 119, 2005.
  • 25. TOBOR-KAPŁON M. A., BLOEM J., RÖMKENS P. F. A. M., DE RUITER P. C. Functional stability of microbial communities in contaminated soils near a zinc smelter (Budel, the Netherlands). Ecotoxicology, 15, (2), 187, 2006.
  • 26. BÉRARD A., BEN SASSI M., RENAULT P., GROS R. Severe drought-induced community tolerance to heat wave. An experimental study on soil microbial processes. JSS. 12, (4), 513, 2012.
  • 27. STEFANOWICZ A. M., NIKLIŃSKA M., LASKOWSKI R. Metals affect soil bacterial and fungal functional diversity differently. Environ. Toxicol. Chem./SETAC 27, (3), 591, 2008.
  • 28. CHODAK M., NIKLIŃSKA M. Development of microbial biomass and enzyme activities in mine soils. Pol. J. Environ. Stud. 21, 569, 2012.
  • 29. HOBBLEN P. H. F., KOOLHAAS J. E., VAN GESTEL C. A. M. Effects of heavy metals on the litter decomposition by the earthworm Lumbricus rubellus. Pedobiologia 50, 51, 2006.
  • 30. ÖHLINGER R. Soil respiration by titration. In: Schinner F., Öhlinger R., Kandeler E., Margesin R. (Eds.) Methods in soil biology. Springer, Berlin Heidelberg New York, 95, 1996.
  • 31. RAMAKRISHNAN B., MEGHARAJ M., VENKATESWARLU K., SETHUNATHAN N., NAIDU R. Mixtures of environmental pollutants: Effects on microorganisms and their activities in soils. Rev. Environ. Contam. T. 211, 63, 2011.
  • 32. BARROS N., GOMEZ-ORELLANA I., FEIJOO S., BALSA R. The effect of soil moisture on soil microbial activity studied by microcalorimetry. Thermochim. Acta 249, 161, 1995.
  • 33. STEMMER M., WATZINGER A., BLOCHBERGER K. HABERHAUER G., GERZABEK M. H. Linking dynamics of soil microbial phospholipid fatty acids to carbon mineralization in a ¹³C natural abundance experiment: Impact of heavy metals and acid rain. Soil Biol. Biochem. 39, (12), 3177, 2007.
  • 34. YUANPENG W., QINGBIAO L., WANG H., JIYAN S., QI L., XINCAI C., YINGXU C. Effect of sulfur on soil Cu/Zn availability and microbial community composition. J. Hazard. Mater. 159, 385, 2008.
  • 35. VAN BEELEN P., FLEUREN-KEMILÄ A.K. Influence of pH on the toxic effects of zinc, cadmium, and pentachlorophenol on pure cultures of soil microorganisms. Environ. Toxicol. Chem. 16, (2), 146, 1997.
  • 36. HAYES S. M., WHITE S. A., THOMPSON T. L., MAIER R. M. CHOROVER J. Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings: Coupling chemical and micro-scale analyses. Appl. Geochem. 24, (12) 2234, 2009.
  • 37. VAN BEELEN P., WOUTERSE M., POSTHUMA L., RUTGERS M. Location-specific eco-toxicological risk assessment of metal-polluted soils. Environ. Toxicol. Chem. 23, 2769, 2004.
  • 38. LOCK K., JANSSEN C. R. Influence of aging on copper bioavailability in soils. Environ. Toxicol. Chem. 22, (5), 1162, 2003.
  • 39. OORTS K., GHESQUIERE U., SMOLDERS E. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride. Environ. Toxicol. Chem. 26, (6), 1130, 2007.
  • 40. SMOLDERS E., OORTS K., VAN SPRANG P., SCHOETERS I., JANSSEN C. R., MCGRATH S. P., MCLAUGHLIN M. J. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. 28, (8), 1633, 2009.
  • 41. WENDLING L. A, KIRBY J. K., MCLAUGHLIN M. J. Aging effects on cobalt availability in soils. Environ. Toxicol. Chem. 28, (8), 1609, 2009.
  • 42. NIKLIŃSKA M., LASKOWSKI R., MARYAŃSKI M. Effect of heavy metals and storage time on two types of forest litter: basal respiration rate and exchangeable metals. Ecotox. Environ Safe. 41, (1), 8, 1998.
  • 43. FROSTEGARD A., TUNLID A., BARTH E. Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Science. 28, (1), 55, 1996.
  • 44. BÅÅTH E., FROSTEGARD Ä., DIAZ-RAVINA M., TUNLID A. Microbial community-based measurements to estimate heavy metal effects in soil: The use of phospholipid fatty acid patterns and bacterial community tolerance. Ambio 27, 58, 1998.
  • 45. WITTER E., GONG P., BÅÅTH E., MARSTORP H. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ. Toxicol. Chem. 19, 1983, 2000.
  • 46. NIKLINSKA M., CHODAK M., LASKOWSKI R. Characterization of the forest humus microbial community in a heavy metal polluted area. Soil Biol. Biochem. 37, (12), 2185, 2005.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a6319f41-977e-433e-a0a0-433795a6e57d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.