PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 29 | 2 |

Tytuł artykułu

Genetic variability of Salmo trutta L. species from the catchment areas of the Drawa and Rega rivers evaluated using RAPD and SSR markers

Warianty tytułu

PL
Ocena zmienności genetycznej gatunków Salmo trutta L. z cieków zlewni Drawy i Regi za pomocą markerów RAPD i SSR

Języki publikacji

EN

Abstrakty

EN
The knowledge of the genetic variability and structure of Salmo trutta population is needed for effective protection of the species and rational management of the resources. A number of marker systems have been introduced to evaluate the genetic variability of trout populations. Among them, the most often used are the RAPD and SSR markers. Both marker systems are classified as type II markers (O’BRIEN 1991, LERCETEAU-KÖHLER and WEISS 2006). In this study, the genetic variability of the Salmo trutta m. fario and Salmo trutta m. trutta populations from the Rega river, and the three watercourses Sitna, Słopica and Bagnica of the Drawa river catchment area, were analysed. One stream, the Chojnówka (located outside the catchments of the above streams), was used as an extra study area. Based on two marker systems, different results were obtained. In the case of RAPD analysis, all loci were polymorphic in all populations. The use of these marker systems permitted the construction of UPGMA similarity trees. The trees revealed a division of the analysed populations into two groups: one group from the Słopica river and the other group from the remaining watercourses. In the second similarity group, two subgroups can be distinguished: one comprising the population of the sea trout from the Rega river and that of the brown trout from the Sitna river (60.7%), and the other consisting of the parr trout populations from the Chojnówka, Bagnica and Sitna (50.3–79.4%). Between the analysed populations, 100% polymorphism was found. The results indicate a high genetic variability of the studied populations. In the case of SSR analysis, 9 microsatellite loci isolated from five trout populations were described. The number of alleles at these loci ranged from 1 to 5 with an average of 2.8 alleles per locus. The expected heterozygosity ranged from 0.07 to 0.66, with an average of 0.35. The results indicate high genetic variation of the populations studied.
PL
W pracy badano zmienność między populacjami Salmo trutta m. fario i Salmo trutta m. trutta pochodzącymi z Regi oraz trzech cieków zlewni Drawy: Sitnej, Słopicy i Bagnicy na podstawie analizy RAPD i SSR. Do analizy dodano jedną populację – Chojnówkę zlokalizowaną poza zlewnią Drawy. Na podstawie dwóch systemów markerowych otrzymano zróżnicowane wyniki. W przypadku analizy RAPD wszystkie loci były polimorficzne we wszystkich populacjach. Drzewo UPGMA przedstawia podział analizowanych populacji na dwie grupy: do pierwszej należy jedynie populacja Słopicy, a do drugiej wszystkie pozostałe. W pracy stwierdzono także występowanie 100% polimorfizmu między analizowanymi populacjami. W przypadku analizy SSR badano 9 loci mikrosatelitarnych w 5 populacjach. Drzewo UPGMA na podstawie tego systemu markerowego przedstawia podział badanych populacji na dwie grupy podobieństwa: jedną złożoną z populacji z Regi i drugą, do której należą pozostałe populacje. Populacja dorosłych oraz troci w stadium parr z Sitnej tworzą odrębną podgrupę podobieństwa. Otrzymane wyniki wskazują na bardzo duże zróżnicowanie genetyczne badanych ryb.

Wydawca

-

Rocznik

Tom

29

Numer

2

Opis fizyczny

p.161-175,fig.,ref.

Twórcy

autor
  • Department of Cell Biology, University of Szczecin, Waska 13, 70-415 Szczecin, Poland
  • Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
autor
  • Department of Cell Biology, University of Szczecin, Waska 13, 70-415 Szczecin, Poland
  • Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
  • Department of General Zoology, University of Szczecin, Szczecin, Poland
  • Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
  • Department of General Zoology, University of Szczecin, Szczecin, Poland
  • Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
autor
  • Department of General Zoology, University of Szczecin, Szczecin, Poland
  • Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland
autor
  • Department of General Zoology, University of Szczecin, Szczecin, Poland
  • Molecular Biology and Biotechnology Center, University of Szczecin, Szczecin, Poland

Bibliografia

  • ACHORD S., ZABEL R.W., SANDFORD B.P., WILLIAMS J.G. 2007. Migration timing, growth, and estimated parr-to-smolt survival rates of wild Snake River spring-summer Chinook salmon from the Salmon River basin, Idaho, to the lower Snake River. Trans. Am. Fish. Soc., 36: 142–154.
  • ALI B.A., HUANG T.H., QIN D.N., WANG X.M. 2004. A review of random amplified polymorphic DNA (RAPD) markers in fish. Rev. Fish Biol. Fish., 14: 4443–4453.
  • ANDERSON J.A., CHURCHILL G.A., AUTRIQUE J.E., TANKSLEY S.D., SORRELLS M.E. 1993. Optimising parental selection for genetic linkage maps. Genome, 36: 181–186.
  • BARTEL R. 2001. Return of salmon back to Polish waters. Ecohydrology & Hydrobiology, 1: 337-392.
  • BECKMANN J.S., WEBER J.L. 1992. Survey of human and rat microsatellites. Genome, 12: 627–631.
  • BERNARDI G., TALLEY D. 2000. Molecular evidence for reduced dispersal in the coastal California killifish, Fundulus parvipinnis. J. Exp. Mar. Biol. Ecol., 255: 187–199.
  • BERNATCHEZ L., GUYOMARD R., BONHOMME F. 1992. DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta population. Mol. Ecol., 1: 161–173.
  • BIELAWSKI J.P., PUMO D.E. 1997. Randomly amplified polymorphic DNA (RAPD) analysis of Atlantic Coast striped bass. Heredity, 78: 32–40.
  • BOWCOCK A.M., RUIZ-LINARES A., TOMFOHRDE J., MINCH E., KIDD J.R., CAVALLI-SFORZA L.L. 1997. High resolution of human evolutionary trees with polymorphic microsatellites. Nature, 368: 455–457.
  • BROWN C., DAY R.L. 2002. The future of stock enhancements: lessons for hatchery practice from conservation biology. Fish and Fisheries, 3: 79–94.
  • BRYLIŃSKA M. 2000. Ryby słodkowodne Polski. Warszawa, PWN.
  • CACCONE A., ALLEGRUCCI G., FORTUNATO C., SBORDONI V. 1997. Genetic differentiation within the European Sea Bass (D. labrax) as revealed by RAPD-PCR assays. J. Heredity, 88: 316–324.
  • CAGIGAS M.E., VAZQUEZ E., BLANCO G., SANCHEZ J.A. 1999. Genetic effects of introduced hatchery stocks on indigenous brown trout (Salmo trutta L.) populations in Spain. Ecol. Fresh. Fish, 8: 141–150.
  • CHAPMAN L.J., CHAPMAN C.A., BRAZEAU D.A., MCLAUGHLIN B., JORDAN M. 1999. Papyrus swamps, hypoxia, and faunal diversification: variation among populations of Barbus neumayeri. J. Fish Biol., 54: 310–327.
  • CZERNIAWSKI R., PILECKA-RAPACZ M., DOMAGAŁA J. 2010. Growth and survival of brown trout fry (Salmo trutta m. fario L.) in the wild, reared in the hatchery on different feed. EJPAU, 13: 2, http://www.ejpau.media.pl/volume13/issue2/art-04.html, access: 5.12.2010.
  • DERGAM J.A., SUZUKI H.I., SHIBATTA O.A., DUBOC L.F., JÚLIO JR H.F., GIULIANO-CAETANO L., BLACK W.C. 1998. Molecular biogeography of neotropical fish Hoplias malabaricus (Erythriniade, Characiformes) in the Iguaçu, Tibagi and Paraná rivers. Gen. Mol. Biol., 21: 493–496.
  • DICE L.R. 1945. Measures of the amount of ecologic association between species. Ecology, 26: 297–302.
  • DOMAGAŁA J., BARTEL R. 1997. Survival and growth of hatchery reared salmon and preying discharged into small streams. Kom. Ryb., 1: 34–38.
  • DOMAGAŁA J., BARTEL R. 1999. Summer fry – smolt survival of Salmon (Salmo salar) stocked into River Gowienica. 87-th Statutor Meeting ICES, Stockholm, Sweden ICES, CM. 02: 1–4. Heath of Welfare Cultivated Aquatic Animals.
  • DUNNER S., ROYO L., CANON J. 2000. Genetic structure in Atlantic brown trout (Salmo trutta L.) populations in the Iberian peninsula: evidence from mitochondrial and nuclear DNA analysis. J. Animal Breed. Gen., 117: 105–120.
  • ESTOUP A., PRESA P., KRIEG F., VAIMAN D., GUYOMARD R. 1993. (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity, 71: 488–496.
  • ESTOUP A., ROUSSET F., MICHALAKIS Y., CORNUET J.M., ADRIAMANGA M., GUYOMARD R. 1998. Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Mol. Ecol., 7: 339–353.
  • FOO C.L., DINESH K.R., LIN T.M., CHAN W.K., PHANG V.P.E. 1995. Inheritance of RAPD markers in the Guppy fish, Poecilia reticulate. Zoo. Sci., 12: 535–541.
  • FRITZNER N.G., HANSEN M.M., MADSEN S., KRISTIANSEN K. 2001. Use of microsatellite markers for identification of indigenous brown trout (Salmo trutta L.) in a geographical region heavily influenced by stocked domesticated trout. J. Fish Biol., 58: 1197–1210.
  • FUCHS H., GROSS R., STEIN H., ROTTMANN O. 1998. Application of molecular genetic markers for the differentiation of bream (Abramis brama L.) populations from the rivers Main and Danube. J. Appl. Ichthyol., 14: 49–55.
  • GARCIA-MARIN J.L., PLA C. 1996. Origins and relationships of native populations of Salmo trutta (brown trout) in Spain. Heredity, 77: 313–323.
  • GIUFFRA E., BERNATCHEZ L., GUYOMARD R. 1994. Mitochondrial control region and protein coding genes sequence varation between phenotypic forms of brown trout Salmo trutta from northern Italy. Mol. Ecol., 3: 161–171.
  • GIUFFRA E., GUYOMARD R., FORNERIS G. 1996. Phylogenetic relationships and introgression pattern between incipient parapatric species of Italian brown trout (Salmo trutta L.). Mol. Ecol., 5: 207–220.
  • HALLERMAN E.M., BECKMANN J.S. 1988. DNA-level polymorphism as a tool in fisheries science. Can. J. Fish. Aquat. Sci., 45: 1075–1087.
  • HANSEN M.M., RUZZANTE D.E., NIELSEN E.E., MENSBERG K-L. D. 2000. Microsatellite and mitochondrial DNA polymorphism reveals life – history dependent interbreeding between hatchery and wild brown trout (Salmo trutta L.). Mol Ecol., 9: 583–94.
  • HATANAKA T., GALETTI P.M. 2003. RAPD markers indicate the occurrence of structured populations in a migratory freshwater fish species. General Molecular Biology, 261: 19–25.
  • HENDRY A.P., WENBURG J.K., BENTZEN P., VOLK E.C., QUINN T.P. 2000. Rapid evolution of reproductive isolation in the wild: evidence from introduced salmon. Science, 290: 516–518.
  • JONSSON B., JONSSON N. 2006. Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. J. Marine Sci., 63: 1162–1181.
  • JORDE P.E., RYMAN N. 1996. Demographic genetics of brown trout (Salmo trutta) and estimation effective population size from temporal changes of allele frequencies. Genetics, 143: 1369–1381.
  • LAIKRE L., JÄRVI T., JOHANSSON J., PALM S., RUBIN J-F., GLIMSÄTER C.E., LANDERGREN P., RYMA N. 2002. Spatial and temporal population structure of sea trout at the Island of Gotland, Sweden, delineated from mitochondrial DNA. Journal of Fish Biology, 60(1): 49–71.
  • LARGIADER C.R., SCHOLL A. 1996. Genetic introgression between native and introduced brown trout Salmo trutta L: populations in the Rhone River basin. Mol. Ecol., 5: 417–426.
  • LERCETEAU-KO¨HLER E., WEISS S. 2006. Development of a multiplex PCR microsatellite assay in brown trout Salmo trutta and its potential application for the genus. Aquaculture. 258: 641–645.
  • LIU Z.J., LI P., ARGUE B.J., DUNHAM R.A. 1999. Random amplified polymorphic DNA markers: usefulness for gene mapping and analysis of genetic variation of catfish. Aquaculture, 174: 59–68.
  • ŁUCZYNSKI M., BARTEL R. 1997. Some of the genetic risks associated with stocking. [In:] Fishing in protected waters and fish stocks. Ed. T. Backiel, Roczniki Naukowe PZW, University of Łódź, pp. 95–102.
  • ŁUCZYNSKI M., BARTEL R., VUORINEN J.A., DOMAGAŁA J., ZOLKIEWICZ L., BRZUZAN P. 2000. Biochemical genetic characteristics of four Polish sea trout (Salmo trutta trutta L.) populations. Pol. Arch. Hydrobiol., 47: 21–28.
  • MCNEIL W. 1991. Expansion of cultured Pacific salmon into marine ecosystems. Aquaculture, 98: 173–183.
  • NADIG S., LEE K.L., ADAMS S.M. 1998. Evaluating alterations of genetic diversity in sunfish populations exposed to contaminants using RAPD assay. Aquat. Toxicol., 43: 163–178.
  • NEI M., TAJIMA F., TATENO Y. 1991. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol., 19: 153–170.
  • O’BRIEN S.J. 1991. Molecular genome mapping lessons and prospects. Current Opinion Gen. Dev., 1: 105–111.
  • OLSEN J.B., SEEB L.W., BENTZEN P., SEEB J.E. 1998. Genetic interpretation of broad-scale microsatellite polymorphism in odd-year pink salmon. Trans. Am. Fish. Soc., 127: 535–550.
  • O'REILLY P.T., HAMILTON L.C., MCCONNELL S.K., WRIGHT J.M. 1996. Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat Sci., 53: 2292–2298.
  • OSINOV A.G. 1984. Zoogeographical origins of brown trout, Salmo trutta (Salmonidae): Data from biochemical genetic markers. J. Ichthyol., 241: 10–21.
  • POSTELTHWAIT J.H., JOHNSON S.L., MIDSON C.N., TALBOT W.S., GATES M., BALLINGER E.W., AFRICA D., ANDREWS R., CARL T., EISEN J.S., HORNE S., KIMMEL C.B., HUTCHINSON M., JOHNSON M., RODRIGUEZ A. 1994. A genetic linkage map for the zebrafish. Science, 264: 699–703.
  • POTEAUX C. 1995. Interactions genetiques entre formes sauvages et formes domestiques chez la truite commune (Salmo trutta fario L.). Ph.D. thesis, Université Montpellier II, Montpellier, p. 110.
  • PRESA P., KRIEG F., ESTOUP A., GUYOMARD R. 1994. Diversité et gestion génétique de la truite commune. Apport de I’étude du polymorphisme des locus protéiques et microsatellites. Genet. Se. Evol., 26: (suppl.) 183–202.
  • PRESA P., GUYOMARD R. 1996. Conservation of microsatellites in three species of salmonids. J. Fish Biol., 49: 1326–1329.
  • ROLLINS M.F., VU N.V., SPIES I.B., KALINOWSKI S.T. 2009. Twelve microsatellite loci for lake trout (Salvelinus namaycush). Mol. Ecol. Res., 9: 871–873.
  • RUZZANTE D.E., HANSEN M.M., MELDRUP D. 2001. Distribution of individual inbreeding coefficients, relatedness and influence of stocking on native anadromous brown trout (Salmo trutta) population structure. Mol. Ecol., 10: 2107–2128.
  • SAKAMOTO T., OKAMOTO N., IKEDA Y., NAKAMURA Y., SATO T. 1994. Dinucleotide-repeat polymorphism in DNA of rainbow trout and its application in fisheries science. J Fish. Biol., 44: 1093–1096.
  • SALVANES A.G.V., Ocean Ranching, 2001. Encyclopedia of Ocean Sciences. Eds. J. Steele, K.K. Turkian, TS.A. Horpe, Academic Press, 4: 1973–1982.
  • SKUZA L., ACHREM M., CZERNIAWSKI R., ŚCIESIŃSKA M., DOMAGAŁA J. 2009. Genetic diversity of brown trout (Salmo trutta m fario L., 1758) from two rivers Drava basin (buffer zone of Drawieński National Park) based on RAPD-PCR analysis. [In:] Reproduction, fry, prevention salmonids and other species. Eds. Z. Zakęś, K. Demska-Zakęś, A. Kowalska, D. Ulikowski, IRS Olsztyn, pp. 17–24.
  • SLETTAN A. 1995. GenBank Acc. no. Z49134.
  • SLETTAN A., OLSAKER I., LIE Ř. 1995. Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Animal Genetics, 26: 281–282.
  • SMITH P.J., BENSON P.G., MCVEAGH S.M. 1997. A comparison of three genetic methods used for stock discrimination of orange roughy, Hoplostethus atlanticus: allozymes, mithochondrial DNA, and random amplified polymorphic DNA. Fish. B-Noaa, 95: 800–811.
  • TAGGART J.B., FERGUSON A. 1990. Minisatellite DNA fingerprints of salmonid fishes. Animal Genetics, 21: 377–389.
  • TESSIER N., BERNATCHEZ L. 1999. Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol. Ecol., 8: 169–179.
  • WAS A., WENNE R. 2002. Genetic differentiation in hatchery and wild sea trout (Salmo trutta) in the southern Baltic at microsatellite loci. Aquaculture, 204: 493–506.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a6102ddd-74ea-4a7b-b344-fdebef926dd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.