PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 21 | 3 |

Tytuł artykułu

Physiological adaptations of motor units to endurance and strength training

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The motor units consisting of motoneuron and muscle fibers, is the smallest functional unit of the neuromuscular system, which has ability to adopt plastically to acting stimuli. The increase of the physical activity, evoked by various type of trainings is one of the most important factors which induces morphological, biochemical and physiological changes in motor units. Endurance and strength training are two forms of physical activity leading to differential modifications in physiological features of motor units. Endurance training improves ability of muscle to sustain contractile activity for a long time, while strength training improves muscle strength and power. This manuscript summarizes the knowledge on the essential physiological adaptations in the both components of motor units – motoneuron and muscle fibers to endurance and strength training. The main aim of this paper is to enhance understanding on the strategy by which the neuromuscular system optimizes its activity in order to improve capabilities of the skeletal muscles to both forms of physiological activity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

21

Numer

3

Opis fizyczny

p.129-134,ref.

Twórcy

  • Department of Neurobiology, University School of Physical Education, Poznan, Poland
autor
  • Department of Motor RehabilitationUniversity, School of Physical Education, Poznan, Poland

Bibliografia

  • 1. Vila-Cha C, Falla D, Farina D. Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J Appl Physiol. 2010; 109: 1455-1466.
  • 2. Tamaki T, Uchiyama S, Nakano S. A weight-lifting exercise model for inducing hypertrophy in the hind limb muscles of rats. Med Sci Sports Exerc. 1992; 24: 881-886.
  • 3. Gardiner PF. Physiological properties of motoneurons innervating different muscle unit types in rat gastrocnemius. AJP-JN Physiol. 1993; 69(4): 1160-1170.
  • 4. Burke RE. Motor units: anatomy, physiology and functional organization. Handbook of Physiology. Motor Control. Am Physiol Soc. 1981; 10: 345-422.
  • 5. Brooke MH, Kaiser KK. Three myosin adenosine triphosphatase system: the nature of their pH lability and sulfahydrol dependence. J Histochem Cytochem. 1970; 18: 670-672.
  • 6. Burke RE, Levine DN, Tsairis P, Zajac FE. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973; 234: 723-748.
  • 7. Peter IB, Bernard RJ, Edgerton VR, Gillespie CA, Stempel KE. Metabolic profiles of three types of skeletal muscle in guinea pigs and rabbits. Biochem. 1972; 11: 2627-2633.
  • 8. Grottel K, Celichowski J. Division of motor units in medial gastrocnemius muscle of the rat in the light of variability of their principal properties. Acta Neurobiol Exp. 1990; 50: 571-588.
  • 9. Kozłowski S, Nazar K, Chwalbińska-Moneta J. Trening fizyczny - mechanizmy i efekty fizjologiczne (Physical training: physiological mechanisms and effects). In: Kozłowski S, Nazar K, eds., Wprowadzenie do fizjologii klinicznej (Introduction to clinical physiology). Warszawa: Wydawnictwo Lekarskie PZWL. 1995; 290-324.
  • 10. McDonagh MJN, Davies CTM. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur J Appl Physiol. 1984; 52: 139-155.
  • 11. Beaumont E, Gardiner PF. Endurance training alters the biophysical properties of hindlimb motoneurons in rats. Muscle Nerve. 2003; 27: 228-236.
  • 12. Gabriel JP, Ausborn J, Ampatzis K, Mahmood R, Ekolf-Ljunggren E, El Manira A. Principles governing recruitment of motoneurons during swimming in zebrafish. Nat. Neurosci. 2006; 14: 93-99.
  • 13. Gardiner P, Dai Y, Heckman CJ. Effects of exercise training on alpha-motoneurons. J Appl Physiol. 2006; 101: 1228-1236.
  • 14. Pogrzebna M, Celichowski J. Changes in the contractile properties of motor units in the rat medial gastrocnemius muscle after one month of treadmill training. Acta Physiol. 2008; 193: 367-379.
  • 15. McComas AJ. Human neuromuscular adaptations that accompany changes in activity. Med Sci Sports Exerc. 1994; 26(12): 1498-1509.
  • 16. Lee S, Farrar RP. Resistance training induces muscle- specific changes in muscle mass and function in rat. J Exe Physiol. 2003; 6: 80-87.
  • 17. Keen DA, Yue GH, Enoka RM. Training-related enhancement in the control of motor output in elderly humans. J Appl Physiol. 1994; 77: 2648-2658.
  • 18. Pucci AR, Griffin L, Cafarelli E. Maximal motor unit firing rates during isometric resistance training in men. Exp Physiol. 2006; 91: 171-178.
  • 19. Beaumont E, Gardiner P. Effects of daily spontaneous running on the electrophysiological properties of hindlimb motoneurones in rats. J Physiol. 2002; 540: 129-138.
  • 20. Klitgaard H. A model for quantitative strength training of hindlimb muscles of the rat. J Appl Physiol. 1988; 64: 1740-1745.
  • 21. Gardiner P, Beaumont E, Cormery B. Motoneurones "Learn" and "Forget" Physical Activity. Can J Appl Physiol. 2005; 30(3): 352-370.
  • 22. Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol. 2006; 101: 1776-1782.
  • 23. Duchateau J, Semmler JG, Enoka RM. Training adaptations in the behavior of human motor units. J Appl Physiol. 2006; 101: 1766-1775.
  • 24. Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behavior contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998; 513: 295-305.
  • 25. Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci. 2004; 59: 1334-1338.
  • 26. Sale DG. Neural adaptation to resistance training. Med Sci Sports Exerc. 1988; 20: 135-145.
  • 27. Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006; 38(11): 1965-1970.
  • 28. Baar K. Training for endurance and strength: lessons from cell signaling. Med Sci Sports Exerc. 2006; 38(11): 1939-1944.
  • 29. Fitts RH, Widrick JJ. Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev. 1996; 24: 427-473.
  • 30. Waters RE, Rotevatn S, Li P, Annex BH, Yan Z. Voluntary running induces fiber type-specific angiogenesis in mouse skeletal muscle. Am J Physiol Cell Physiol. 2004; 287: 1342-1348.
  • 31. Pilaczyńska-Szczęśniak Ł, Celichowski J. Wpływ wysiłku fizycznego na mięśnie szkieletowe (Effects of physical exercise on skeletal muscles). In: Górski J, ed., Fizjologiczne podstawy wysiłku fizycznego (Physiological bases of physical exercise). Warszawa: Wydawnictwo Lekarskie PZWL. 2006: 145-156.
  • 32. Klitgaard H, Zhou M, Richter EA. Myosin heavy chain composition of single fibres from m. biceps brachii of male body builders. Acta Physiol Scand. 1989; 140: 175-180.
  • 33. Roy RR, Wilson R, Edgerton VR. Architectural and mechanical properties of the rat adductor longus: response to weight-lifting training. Anat Rec. 1991; 247: 170-178.
  • 34. McDougall JD, Sale DG, Always SE, Sutton JR. Muscle fiber number in biceps brachii in bodybuilders and control subjects. J Appl Physiol. 1984; 57: 1399-1403.
  • 35. Staron RS, Leonardi MJ, Karapondo DL, Malicky ES, Falkel JE, Hagerman FC, Hikida RS. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J Appl Physiol. 1991; 70: 631-640.
  • 36. Chan KM, Anders LP, Polykovskaya Y, Brown WF. The effects of training through high-frequency electrical stimulation on the physiological properties of single human thenar motor units. Muscle Nerve. 1999; 22: 185-195.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a5ac28cd-1735-438e-ab48-6bfc7d3ee53d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.