PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 74 | 1 |

Tytuł artykułu

Respiratory activity in the 6 - hydroxydopamine model of Parkinson's disease in the rat

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Respiratory disturbances accompany Parkinson's disease. Weakness of the respiratory muscles or lowering of central respiratory drive might be responsible for respiratory disability. Striatal injection of 6-hydroxydopamine (6-OHDA) simulates motor symptoms of Parkinson's disease in the rat. Present study investigated whether unilateral infusion of 6-OHDA into the striatum may evoke respiratory disorders and therefore be a model for the study of the respiratory aspects of Parkinson's disease. Two weeks after the infusion the animals were anesthetized, vagotomized, paralyzed and artificially ventilated. Neural respiratory activity in the vehicle and 6-OHDA treated groups of animals was assessed from the peak amplitude of the phrenic and hypoglossal bursts, frequency of bursts and minute activity during baseline ventilation and acute intermittent hypoxia composed of five 1.5 minute long episodes of 11% oxygen introduced every 3 minutes. An impairment of dopaminergic pathways by 6-OHDA evoked separate effects on phrenic and hypoglossal activity. Under baseline conditions the respiratory parameters taken from the integrated phrenic nerve activity unchanged, while the pre- inspiratory part of the hypoglossal activity (pre-I HG) was reduced both in terms of its onset and amplitude. 6-OHDA did not affect the phrenic response to acute intermittent hypoxia but it increased the hypoglossal response (Fig. 2). Hypoxia activated the pre-I HG in both experimental groups. Although the pre-I HG increased strongly during hypoxic stimulation, the ratio of the pre-inspiratory hypoglossal amplitude to the inspiratory hypoglossal amplitude never achieved similar values as in the sham group. This ratio decreased significantly during secondary decline of the hypoxic respiratory response. A decline of the hypoxic response was more intense in the hypoglossal activity than in the phrenic activity and moved into hypoxic apnoea more frequently in the Parkinson's disease model. The results indicate a differential modulation of the phrenic and hypoglossal neural output with increased chemical drive when dopaminergic pathways were impaired by 6-OHDA suggesting that such a mechanism may contribute to respiratory insufficiency in Parkinson's disease. An involvement of a modified mechanism of dopamine efflux and of serotonin and orexin during hypoxia is suggested in the observed changes in the hypoglossal activity in the 6-OHDA model of PD.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

74

Numer

1

Opis fizyczny

p.67-81,fig.,ref.

Twórcy

autor
  • Department of Respiratory Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
  • Department of Respiratory Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland

Bibliografia

  • Bach KB, Mitchell GS (1996) Hypoxia-induced long-term facilitation of respiratory activity is serotonin dependent. Respir Physiol 104: 251-260.
  • Bailey EF, Fregosi RF (2004) Coordination of intrinsic and extrinsic tongue muscles during spontaneous breathing in the rat. J Appl Physiol 96: 440-449.
  • Bisgard GE, Neubauer JA (1995) Peripheral and central effects of hypoxia. In: Regulation of Breathing (Dempsey JA, Pack AI, Ed.). Marcel Dekker Inc., New York, NY, p. 617-668.
  • Blandini F, Porter RH, Greenamyre JT (1996) Glutamate and Parkinson's disease. Mol Neurobiol 12: 73-94.
  • Bolme P, Fuxe K, Hökfelt T, Goldstein M (1977) Studies on the role of dopamine in cardiovascular and respiratory control: central versus peripheral mechanisms. Adv Biochem Psychopharmacol 16: 281-290.
  • Bradford A, McGuire M, O'Halloran KD (2005) Does epi¬sodic hypoxia affect upper airway dilator muscle func¬tion? Implications for the pathophysiology of obstructive sleep apnoea. Respir Physiol Neurobiol 147: 223-234.
  • Bubser M, Fadel JR, Jackson LL, Meador-Woodruff JH, Jing D, Deutch AY (2005) Dopaminergic regulation of orexin neurons. Eur J Neurosci 21: 2993-3001.
  • Cardoso SR, Pereira JS (2002) Analysis of breathing func¬tion in Parkinson's disease. Arq Neuropsiquiatr 60: 91-95.
  • Ciucci MR, Russell JA, Schaser AJ, Doll EJ, Vinney LM, Connor NP (2011) Tongue force and timing deficits in a rat model of Parkinson disease. Behav Brain Res 222: 315-320.
  • Cui LB, Li BW, Jin XH, Zhao L, Shi J (2010) Progressive changes of orexin system in a rat model of 6-hydroxydo- pamine-induced Parkinson's disease. Neurosci Bull 26: 381-387.
  • Di Matteo V, Pierucci M, Esposito E, Crescimanno G, Benigno A, Di Giovanni G (2008) Serotonin modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders. Prog Brain Res 172: 423-463.
  • Djaldetti R, Ziv I, Melamed E (2006) The mystery of motor asymmetry in Parkinson's disease. Lancet Neurol 59: 796-802.
  • Dutschmann M, Kron M, Mörschel M, Gestreau C (2007) Activation of Orexin B receptors in the pontine Kölliker- Fuse nucleus modulates pre-inspiratory hypoglossal motor activity in rat. Respir Physiol Neurobiol 159: 232-235.
  • Estenne M, Hubert M, De Troyer A (1984) Respiratory- muscle involvement in Parkinson's disease. N Engl J Med 311: 1516-1517.
  • Ezure K, Tanaka I (2006) Distribution and medullary projec¬tion of respiratory neurons in the dorsolateral pons of the rat. Neuroscience 141: 1011-1023.
  • Fay RA, Norgren R (1997) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Brain Res Rev 25: 291-311.
  • Feinsilver SH, Friedman JH, Rosen JM (1986) Respiration and sleep in Parkinson's disease. J Neurol Neurosurg Psychiatry 49: 964.
  • Fulceri F, Biagioni F, Lenzi P, Falleni A, Gesi M, Ruggieri S, Fornai F (2006) Nigrostriatal damage with 6-OHDA: validation of routinely applied procedures. Ann N Y Acad Sci 1074: 344-348.
  • Gestreau C, Dutschmann M, Obled S, Bianchi A (2005) Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 147: 159-176.
  • Goiny M, Lagercrantz H, Srinivasan M, Ungerstedt U, Yamamoto Y(1991) Hypoxia-mediated in vivo release of dopamine in nucleus tractus solitarii of rabbits. J Appl Physiol 70: 2395-2400.
  • Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT, Rocher A (1995) Cellular mechanisms of oxygen chemoreception in the carotid body. Respir Physiol 102: 137¬147.
  • Guner I, Yelmen N, Sahin G, Oruç T (2002) The effect of intracerebroventricular dopamine administration on the respiratory response to hypoxia. Tohoku J Exp Med 196: 219-230.
  • Henson LC, Ward DS, Whipp BJ (1992) Effect of dopamine on ventilatory response to incremental exercise in man. Respir Physiol 89: 209-224.
  • Haas BM, Trew M, Castle PC (2004) Effects of respiratory muscle weakness on daily living function, quality of life, activity levels, and exercise capacity in mild to moderate Parkinson's disease. Am J Phys Med Rehabil 83: 601¬607.
  • Hobson DE (2012) Asymmetry in parkinsonism, spreading pathogens and the nose. Parkinsonism Relat Disord 18: 1-9.
  • Hornykiewicz O (1975) Brain monoamines and parkin- sonism. Natl Inst Drug Abuse Res Monogr Ser 3: 13-21.
  • Hovestadt A, Bogaard JM, Meerwaldt JD, van der Meché FG, Stigt J (1989) Pulmonary function in Parkinson's disease. J Neural Neurosurg Psychiatry 52: 329-333.
  • Hsiao C, Lahiri S, Monkish A (1989) Peripheral and central dopamine receptors in respiratory control. Respir Physiol 76: 327-336.
  • Huey KA, Low MJ, Kelly MA, Juarez R, Szewczak JM, Powell FL (2000) Ventilatory responses to acute and chronic hypoxia in mice: effects of dopamine D2 recep¬tors. J Appl Physiol 89: 1142-1150.
  • Huey KA, Szewczak JM, Powell FL (2003) Dopaminergic mechanisms of neural plasticity in respiratory control: trans¬genic approaches. Respir Physiol Neurobiol 135: 133-144.
  • Huot P, Fox SH, Brotchie JM (2011) The serotonergic sys¬tem in Parkinson's disease. Prog Neurobiol 95: 163-212.
  • Izquierdo-Alonso JL, Jiménez-Jiménez FJ, Cabrera-Valdivia F, Mansilla-Lesmes M (1994) Airway dysfunction in patients with Parkinson's disease. Lung 172: 47-55.
  • Kanamaru M, Homma I (2009) Dorsomedial medullary 5-HT2 receptors mediate immediate onset of initial hyperventilation, airway dilation, and ventilatory decline during hypoxia in mice. Am J Physiol Regul Integr Comp Physiol 297: R34-41.
  • Koizumi H, Wilson CG, Wong S, Yamanishi T, Koshiya N, Smith JC (2008) Functional imaging, spatial reconstruc¬tion, and biophysical analysis of a respiratory motor cir¬cuit isolated in vitro. J Neurosci 28: 2353-2365.
  • Kubin L, Tojima H, Davies RO, Pack AI (1992) Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat. Neurosci Lett 139: 243-248.
  • Kuna ST, Remmers JE (1999) Premotor input to hypoglossal motoneurons from Kolliker-Fuse neurons in decerebrate cats. Respir Physiol 117: 85-95.
  • Lalley PM (2008) Opioidergic and dopaminergic modulation of respiration. Respir Physiol Neurobiol 164: 160-167.
  • Lee KZ, Fuller DD (2010) Preinspiratory and inspiratory hypoglossal motor output during hypoxia-induced plas¬ticity in the rat. J Appl Physiol 108: 1187-1198.
  • Nielsen AM, Bisgard GE (1983) Dopaminergic modulation of respiratory timing mechanisms in carotid body-dener- vated dogs. Respir Physiol 53: 71-86.
  • Niemi M, Ojala K (1966) Cytochemical demonstration of catecholamines in the human carotid body. Nature 212: 834-835.
  • Onodera H, Okabe S, Kikuchi Y, Tsuda T, Itoyama Y(2000) Impaired chemosensitivity and perception of dyspnoea in Parkinson's disease. Lancet 356: 739-740.
  • Paxinos G, Watson C (2007) The Rat Brain in Stereotaxic Coordinates. Academic Press, Sydney, AU.
  • Peever JH, Shen L, Duffin J (2002) Respiratory pre-motor control of hypoglossal motoneurons in the rat. Neuroscience 110: 711-722.
  • Pokorski M, Kolesnikova E, Marczak M, Budzinska K (2005) Neurotransmitter mechanisms in the enhancement of the hypoxic ventilatory response by antecedent hyper- oxia in the anesthetized rat. J Physiol Pharmacol 56: 433-446.
  • Prieto GA, Perez-Burgos A, Fiordelisio T, Salgado H, Galarraga E, Drucker-Colin R, Bargas J (2009) Dopamine D2-class receptor supersensitivity as reflected in Ca2+ current modulation in neostriatal neurons. Neuroscience 164: 345-350.
  • Prieto-Lloret J, Donnelly DF, Rico AJ, Moratalla R, González C, Rigual RJ (2007) Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D2 recep¬tors. J Appl Physiol 103: 1269-1275.
  • Reader TA, Dewar KM (1999) Effects of denervation and hyperinnervation on dopamine and serotonin systems in the rat neostriatum: implications for human Parkinson's disease. Neurochem Int 34: 1-21.
  • Sabate M, Rodríguez M, Méndez E, Enríquez E, González I (1996) Obstructive and restrictive pulmonary dysfunction increases disability in Parkinson disease. Arch Phys Med Rehabil 77: 29-34.
  • Saito Y, Ezure K, Tanaka I (2002) Difference between hypo- glossal and phrenic activities during lung inflation and swallowing in the rat. J Physiol544: 183-193.
  • Schwarting RK, Huston JP (1996) The unilateral 6-hydroxy- dopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol 50: 275-331.
  • Scholtissen B, Deumens R, Leentjens AF, Schmitz C, Blokland A, Steinbusch HW, Prickaerts J (2006) Functional investigations into the role of dopamine and serotonin in partial bilateral striatal 6-hydroxydopamine lesioned rats. Pharmacol Biochem Behav 83: 175-185.
  • Seccombe LM, Giddings HL, Rogers PG, Corbett AJ, Hayes MW, Peters MJ, Veitch EM (2011) Abnormal ventilatory control in Parkinson's disease-further evidence for non-mo¬tor dysfunction. Respir Physiol Neurobiol 179: 300-304.
  • Serebrovskaya T, Karaban I, Mankovskaya I, Bernardi L, Passino C, Appenzeller O (1998) Hypoxic ventilatory responses and gas exchange in patients with Parkinson's disease. Respiration 65: 28-33.
  • Serebrovs'ka TV, Kolesnikova IeE, Karaban' IM (2003) Respiratory regulation during adaptation to intermittent hypoxia in patients with Parkinson disease (in Ukrainian). Fiziol Zh 49: 95-103.
  • Sica AL, Cohen MI, Donnelly DF, Zhang H (1984) Hypoglossal motoneuron responses to pulmonary and superior laryngeal afferent inputs. Respir Physiol 56: 339-357.
  • Song G, Xu H, Wang H, Macdonald SM, Poon CS (2011). Hypoxia-excited neurons in NTS send axonal projections to Kölliker-Fuse/parabrachial complex in dorsolateral pons. Neuroscience 175: 145-153.
  • Sun QJ, Pilowsky P, Minson J, Arnolda L, Chalmers J, Llewellyn-Smith IJ (1994) Close appositions between tyrosine hydroxylase immunoreactive boutons and respi¬ratory neurons in the rat ventrolateral medulla. J Comp Neurol 340: 1-10.
  • Tadaiesky MT, Dombrowski PA, Figueiredo CP, Cargnin- Ferreira E, Da Cunha C, Takahashi RN (2008) Emotional, cognitive and neurochemical alterations in a premotor stage model of Parkinson's disease. Neuroscience 156: 830-840.
  • Thannickal TC, Lai YY, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson's disease. Brain 130: 1586-1595.
  • Tin C, Song G, Poon CS (2012) Hypercapnia attenuates inspiratory amplitude and expiratory time responsiveness to hypoxia in vagotomized and vagal-intact rats. Respir Physiol Neurobiol 181: 79-87.
  • Tzelepis GE, McCool FD, Friedman JH, Hoppin FG Jr (1988) Respiratory muscle dysfunction in Parkinson's disease. Am Rev Respir Dis 138: 266-271.
  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degen¬eration of central monoamine neurons. Eur J Pharmacol 5: 107-110.
  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxy- dopamine induced degeneration of the nigrostriatal dopamine system Acta Physiol Scand Suppl. 367: 95-122.
  • van Lunteren E, Haxhiu MA, Mitra J, Cherniack NS (1984) Effects of dopamine, isoproterenol, and lobeline on cranial and phrenic motoneurons. J Appl Physiol 56: 737-745.
  • Volgin DV, Saghir M, Kubin L (2002) Developmental changes in the orexin 2 receptor mRNA in hypoglossal motoneurons. Neuroreport 13: 433-436.
  • Wang Y, Chiou AL, Yang ST, Lin JC (1995) Ketamine antagonizes hypoxia-induced dopamine release in rat striatum. Brain Res 693: 233-245.
  • Weiner D, Mitra J, Salamone J, Cherniack NS (1982) Effect of chemical stimuli on nerves supplying upper airway muscles. J Appl Physiol 52: 530-536.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a5a19839-39ae-42b2-8fef-f50bf84c79c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.