PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 72 | 2 |

Tytuł artykułu

Evidence of parallels between mercury intoxication and the brain pathology in autism

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this review is to examine the parallels between the effects mercury intoxication on the brain and the brain pathology found in autism spectrum disorder (ASD). This review finds evidence of many parallels between the two, including: (1) microtubule degeneration, specifically large, long-range axon degeneration with subsequent abortive axonal sprouting (short, thin axons); (2) dentritic overgrowth; (3) neuroinflammation; (4) microglial/astrocytic activation; (5) brain immune response activation; (6) elevated glial fibrillary acidic protein; (7) oxidative stress and lipid peroxidation; (8) decreased reduced glutathione levels and elevated oxidized glutathione; (9) mitochondrial dysfunction; (10) disruption in calcium homeostasis and signaling; (11) inhibition of glutamic acid decarboxylase (GAD) activity; (12) disruption of GABAergic and glutamatergic homeostasis; (13) inhibition of IGF-1 and methionine synthase activity; (14) impairment in methylation; (15) vascular endothelial cell dysfunction and pathological changes of the blood vessels; (16) decreased cerebral/cerebellar blood flow; (17) increased amyloid precursor protein; (18) loss of granule and Purkinje neurons in the cerebellum; (19) increased pro-inflammatory cytokine levels in the brain (TNF-a, IFN-y, IL-ip, IL-8); and (20) aberrant nuclear factor kappa-light-chain-enhancer of activated B cells (NF-KB). This review also discusses the ability of mercury to potentiate and work synergistically with other toxins and pathogens in a way that may contribute to the brain pathology in ASD. The evidence suggests that mercury may be either causal or contributory in the brain pathology in ASD, possibly working synergistically with other toxic compounds or pathogens to produce the brain pathology observed in those diagnosed with an ASD.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

72

Numer

2

Opis fizyczny

p.113-153,ref.

Twórcy

autor
  • Institute of Chronic Illnesses, Inc., Silver Spring, Maryland, USA
  • University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
autor
  • Institute of Chronic Illnesses, Inc., Silver Spring, Maryland, USA
  • CoMeD, Inc., Silver Spring, Maryland, USA
autor
  • Vitamin Diagnostics, Cliffwood Beach, New Jersey, USA
autor
  • CoMeD, Inc., Silver Spring, Maryland, USA
autor
  • CoMeD, Inc., Silver Spring, Maryland, USA
autor
  • ASD Centers, LLC, Silver Spring, Maryland, USA

Bibliografia

  • Adams DH, Sonne C, Basu N, Dietz R, Nam DH,Leifsson PS, Jensen AL (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408: 5808-5816.
  • Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM (2009) The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicology 2009: 532640.
  • Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell, J, Atwood S, Barnhouse S, Lee W (2011) Nutritional and metabolic status of children with autism vs neurotypical children, and the association with autism severity. Nutr Metab (Lond) 8: 34.
  • Ahlsen G, Rosengren L, Belfrage M, Palm A, Haglid K, Hamberger A, Gillberg C (1993) Glial fibrillary acidic protein in the cerebrospinal fluid of children with autism and other neuropsychiatric disorders. Biol Psychiat 33: 734-743.
  • Allen JW, Mutkus LA, Aschner M (2001) Methylmercury- mediated inhibition of 3H-D-aspartate transport in cul¬tured astrocytes is reversed by the antioxidant catalase. Brain Res 902: 92-100.
  • Arakawa O, Nakahiro M, Narahashi T (1991) Mercury modulation of GABA-activated chloride channels and non-specific cation channels in rat dorsal root ganglion neurons. Brain Res551: 58-63.
  • Asadi S, Zhang B, Weng Z, Angelidou A, Kempuraj D, Alysandratos KD, Theoharides TC (2010) Luteolin and thiosalicylate inhibit HgCl2 and thimerosal-induced VEGF release from human mast cells. Int J Immunopathol Pharmacol 23: 1015-1020.
  • Aschner M, Yao CP, Allen JW, Tan KH (2000) Methylmercury alters glutamate transport in astrocytes. Neurochem Int 37: 199-206.
  • Aschner M, Syversen T, Souza DO, Rocha JB, Farina M, Braz J (2007) Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Med Biol Res 40: 285-291.
  • Aschner M, Onishchenko N, Ceccatelli S (2010) Toxicology of alkylmercury compounds. Met Ions Life Sci 7: 403-434.
  • Ashwood P, Wakefield AJ (2006) Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. J Neuroimmunol 173: 126-134.
  • Assefa S, Curtis J, Sethi S, Davis R, Chen Y, Kaul R (2011) Inorganic mercury exposure in prairie vole (Microtus ochrogaster) alters the expression of toll-like receptor 4 and activates inflammatory pathways in the liver in a sex- specific manner. Hum Exp Toxicol 31: 376-386.
  • Atchison WD (2005) Is chemical neurotransmission altered specifically during methylmercury-induced cerebellar dysfunction? Trends Pharmacol Sci 26: 549-557.
  • Atladottir HO, Thorsen P, Schendel DE, 0stergaard L, Lemcke S, Parner, ET (2010) Association of hospitalization for infection in childhood with diagnosis of autism spectrum disorders: a Danish cohort study. Arch Pediatr Adolesc Med 164: 470-477.
  • Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121: 889-905.
  • Banks WA, Kastin AJ (1991) Blood to brain transport of interleukin links the immune and central nervous sys¬tems. Life Sci 48: PL117-PL121.
  • Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. Neuroimmuno- modulation 2: 241-248.
  • Barttfeld P, Wicker B, Cukier S, Navarta S, Lew S, Sigman M (2011) A big-world network in ASD: Dynamical con¬nectivity analysis reflects a deficit in long-range connec¬tions and an excess of short-range connections. Neuropsychologia 49: 254-263.
  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Grochowina N, Evans RD, O'Brien M, Chan HM (2007) Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink. Neurotoxicology 28: 587-593.
  • Basu N, Scheuhammer AM, Sonne C, Letcher RJ, Born EW, Dietz R (2009) Is dietary mercury of neurotoxicological concern to wild polar bears (Ursus maritimus)? Environ Toxicol Chem 28: 133-140.
  • Basu N, Scheuhammer AM, Rouvinen-Watt K, Evans RD, Trudeau VL, Chan LH (2010) In vitro and whole animal evidence that methylmercury disrupts GABAergic sys¬tems in discrete brain regions incaptive mink. Comp Biochem Physiol C Toxicol Pharmacol 151: 379-385.
  • Bauman M, Kemper TL (1984) The brain in infantile autism; A histoanatomic report. Neurology 34: 275.
  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35: 866-874.
  • Bauman ML, Kemper TL (1994) Neuroanatomic observa¬tions of the brain in autism. In: The Neurobiology of Autism. Johns Hopkins UP, Baltimore, MD.
  • Bautista LE, Stein JH, Morgan BJ, Stanton N, Young T, Nieto FJ (2009) Association of blood and hair mercury with blood pressure and vascular reactivity. WMJ 108: 250-252.
  • Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004) Autism and abnormal development of brain connectivity. J Neurosci 24: 9228¬9231.
  • Belyaeva EA, Korotkov SM, Saris NEJ (2011) In vitro modulation of heavy metal-induced rat liver mitochon¬dria dysfunction: A comparison of copper and mercury with cadmium. Trace Elem Med Biol 25 Suppl 1: S63- 73.
  • Bemis JC, Seegal RF (1999) Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro. Environ Health Perspect 107: 879-885.
  • Bennett PM, Jepson PD, Law RJ, Jones BR, Kuiken T, Baker JR, Rogan E, Kirkwood JK (2001) Exposure to heavy metals and infectious disease mortality in harbour porpoises from England and Wales. Environ Pollut 112:
  • Bernard S, Enayati A, Binstock T, Roger H, Redwood L, McGinnis W (2000) Autism: A Unique Type of Mercury Poisoning. ARC Research, Cranford, NJ.
  • Bernardi S, Anagnostou E, Shen J, Kolevzon A, Buxbaum JD, Hollander E, Hof PR, Fan J (2011) In vivo 1H-mag- netic resonance spectroscopy study of the attentional networks in autism. Brain Res 1380: 198-205.
  • Bertossi, M, Girolamo F, Errede M, Virgintino D, Elia G, Ambrosi L, Roncali, L (2004) Effects of methylmercury on the microvasculature of the developing brain. Neurotoxicol 25: 849-857.
  • Björnberg KA, Vahter M, Petersson-Grawe K, Glynn A, Cnattingius S, Darnerud PO, Atuma S, Aune M, Becker W, Berglund M (2003) Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ Health Perspect 111: 637-641.
  • Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autora¬diographic study. J Autism Dev Disord 31: 537-543.
  • Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, Visser S, Kogan MD (2011) Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics 127: 1034-1042.
  • Brookes N, Kristt DA (1989) Inhibition of amino acid trans¬port and protein synthesis by HgCl2 and methylmercury in astrocytes: selectivity and reversibility. J Neurochem 53: 1228-1237.
  • Brown CE, Murphy TH (2008) Livin' on the edge: imaging dendritic spine turnover in the periinfarct zone during ischemic stroke and recovery Neuroscientist 14: 139-146.
  • Brunelle F, Boddaert N, Zilbovicius M (2009) Autism and brain imaging. Bull Acad Natl Med 193: 287-297.
  • Carvalho MC, Nazari EM, Farina M, Muller YM (2008) Behavioral, morphological, and biochemical changes after in ovo exposure to methylmercury in chicks. Toxicol Sci 106: 180-185.
  • Castoldi AF, Coccini T, Manzo L (2003) Neurotoxic and molecular effects of methylmercury in humans. Rev Environ Health 18: 19-31.
  • Ceccatelli S, Daré E, Moors M (2010) Methylmercury- induced neurotoxicity and apoptosis. Chem Biol Interact 188: 301-308.
  • Chance B (1954) Catalases and peroxidases, part II Special methods. Methods Biochem Anal 1: 408-424.
  • Charleston JS, Body RL, Mottet NK, Vahter ME, Burbacher TM (1995) Autometallographic determination of inor¬ganic mercury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long- term subclinical exposure to methylmercury and mercuric chloride. Toxicol Appl Pharmacol 132: 325-333.
  • Charleston JS, Body RL, Bolender RP, Mottet NK, Vahter ME, Burbacher TM (1996) Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neurotoxicology 17: 127-138.
  • Chauhan A, Gu F, Essa MM, Wegiel J, Kaur K, Brown WT, Chauhan V (2011) Brain region-specific deficit in mito- chondrial electron transport chain complexes in children with autism. J Neurochem 117: 209-220.
  • Chauhan A, Audhya T, Chauhan V (2012) Glutathione redox imbalance and increased DNA oxidation in specific brain regions in autism. Neurochem Res (Epub ahead of print).
  • Chez MG, Dowling T, Patel PB, Khanna P, Kominsky M (2007) Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr Neurol 36: 361-365.
  • Choi BH, Cho KH, Lapham LW (1981) Effects of methyl- mercury on human fetal neurons and astrocytes in vitro: a time-lapse cinematographic, phase and electron micro¬scopic study. Environ Res 24: 61-74.
  • Christensen MM, Ellermann-Eriksen S, Rungby J, Mogensen SC (1996) Influence of mercuric chloride on resistance to generalized infection with herpes simplex virus type 2 in mice. Toxicology 114: 57-66.
  • Cinca I, Dumitrescu I, Onaca P, Serbanescu A, Nestorescu B (1980) Accidental ethyl mercury poisoning with nervous system, skeletal muscle, and myocardium injury. J Neurol Neurosurg Psychiatry 43: 143-149.
  • Cohly HH, Panja A (2005) Immunological findings in autism. Int Rev Neurobiol 71: 317-341.
  • Colton CA, Gilbert DL (1993) Microglia, an in vivo source of reactive oxygen species in the brain. Adv Neurol 59: 321-326.
  • Cote L, Crutcher MD (1991) The basal ganglia. In: Principles of Neural Science (3rd ed.) (Kandel E, Schwartz J, Jessell T, Eds). Appleton and Lange, Norwalk, CT, p. 626-646.
  • Courchesne E (1991) Neuroanatomic imaging in autism. Pediatrics 87: 781-790.
  • Courchesne E (1995) New evidence of cerebellar and brain stem hypoplasia in autistic infants, children, and adoles¬cents: the MR imaging study by Hashimoto and col¬leagues. J Aut Dev Disord 25: 19-22.
  • Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290: 337-344.
  • Courchesne E (2004) Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev 10: 106-111.
  • Courchesne E, Campbell K, Solso S (2011) Brain growth across the life span in autism: age-specific changes in anatomical pathology. Brain Res 1380: 138-145.
  • Curtis JT, Hood AN, Chen Y, Cobb GP, Wallace DR (2010) Chronic metals ingestion by prairie voles produces sex- specific deficits in social behavior: an animal model of autism. Behav Brain Res 213: 42-49.
  • Damarla SR, Keller TA, Kana RK, Cherkassky VL, Williams DL, Minshew NJ, Just MA (2010) Cortical underconnectivity coupled with preserved visuospatial cognition in autism: Evidence from an fMRI study of an embedded figures task. Autism Res 3: 273-279.
  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65: 110-105.
  • Degirmenci B, Miral S, Kaya GC, Iyilikgi L, Arslan G, Baykara A, Evren I, Durak H (2008) Technetium-99m HMPAO brain SPECT in autistic children and their fami¬lies. Psychiatry Res 162: 236-243.
  • Desoto MC, Hitlan RT (2010) Sorting out the spinning of autism: heavy metals and the question of incidence. Acta Neurobiol Exp (Warsz) 70: 165-176.
  • Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M (2008) How environmental and genetic factors combine to cause autism: A redox/methylation hypothe¬sis. Neurotoxicology 29: 190-201.
  • DeVito TJ, Drost DJ, Neufeld RW, Rajakumar N, Pavlosky W, Williamson, P, Nicolson R (2007) Evidence for corti¬cal dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry 61: 465¬473.
  • Dhossche D, Applegate H, Abraham A, Maertens P, Bland L, Bencsath A, Martinez J (2002) Elevated plasma gamma- aminobutyric acid (GABA) levels in autistic youngsters: stimulus for a GABA hypothesis of autism. Med Sci Monit 8: PR1-6.
  • Dong L, Li Z, Bi X, Ling L (2001) Effects of methyl mer¬cury chloride on nuclear factor-kappa B DNA binding activities of nuclear protein extracts from developing rat cerebra and cerebella (in Chinese). Wei Sheng Yan Jiu 30: 7-9.
  • Dreiem A, Seegal RF (2007) Methylmercury-induced chang¬es in mitochondrial function in striatal synaptosomes are calcium-dependent and ROS-independent. Neurotoxi- cology 28: 720-726.
  • Ebisch SJ, Gallese V, Willems RM, Mantini D, Groen WB, Romani GL, Buitelaar JK, Bekkering H (2011) Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum Brain Mapp 32: 1013¬1028.
  • Efe H, Deger O, Kirci D, Karahan SC, Orem A, Calapoglu M (1999) Decreased neutrolphil antioxidative enzyme activity and increased lipid peroxidation in hyperlipopro- teinemic human subjects. Clin Chem Acta 279: 155¬165.
  • el-Fawal HA, Gong Z, Little AR, Evans HL (1996) Exposure to methyl mercury results in serum autoantibodies to neu- rotypic and gliotypic proteins. Neurotoxicology 17: 267-276.
  • Ellermann-Eriksen S, Christensen MM, Mogensen SC (1994) Effect of mercuric chloride on macrophage- mediated resistance mechanisms against infection with herpes simplex virus type 2. Toxicology 93: 269-287.
  • Elsheshtawy E, Tobar S, Sherra K, Atallah S, Elkasaby R (2011) Study of some biomarkers in hair of children with autism. Middle East Current Psychiatry 18: 6-10.
  • Elsner J, Hodel B, Suter KE, Oelke D, Ulbrich B, Schreiner G, Cuomo V, Cagiano R, Rosengren LE, Karlsson JE, Haglid KG (1988) Detection limits of different approach¬es in behavioral teratology, and correlation of effects with neurochemical parameters. Neurotoxicol Teratol 10: 155¬167.
  • Encyclopedia of the Nations (2007) France: Energy and Power. http://www.nationsencyclopedia.com/Europe/ France-ENERGY-AND-POWER.html. Accessed 10/22/09.
  • Enstrom AM, Lit L, Onore CE, Gregg JP, Hansen RL, Pessah IN, Hertz-Picciotto I, Van de Water JA, Pardo CA, Vargas DL, Zimmerman AW (2005) Immunity, neuroglia and neu¬roinflammation in autism. Int Rev Psychiatry 17: 485-495. Erden-Inal M, Sunal E, Kanbak G (2002) Age-related changes in the glutathione redox system. Cellular Biochemical Function 20: 61-66.
  • Eskes C, Honegger P, Juillerat-Jeanneret L, Monnet-Tschudi F (2002) Microglial reaction induced by noncytotoxic methylmercury treatment leads to neuroprotection via interactions with astrocytes and IL-6 release. Glia 37: 43-52.
  • Esterbrauer H, Schaur R J, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11: 81-128.
  • Eto K, Takizawa Y, Akagi H, Haraguchi K, Asano S, Takahata N, Tokunaga H (1999) Differential diagnosis between organic and inorganic mercury poisoning in human cases - the pathologic point of view. Toxicol Pathol 27: 664-671.
  • Eto K (2006) Minamata disease: a neuropathological view¬point (in Japanese). Seishin Shinkeigaku Zasshi 108: 10-23.
  • Evans T A, Siedlak S L, Lu L, Fu X, Wang Z, McGinnis W R, Fakhoury E, Castellani R J, Hazen S L, Walsh W J, Lewis AT, Salomon R G, Smith MA Perry G, Zhu X (2008) The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biochem Biotechnol 4: 61-72.
  • Farina M, Dahm KC, Schwalm FD, Brusque AM, Frizzo ME, Zeni G, Souza DO, Rocha JB (2003a) Methylmercury increases glutamate release from brain synaptosomes and glutamate uptake by cortical slices from suckling rat pups: modulatory effect of ebselen. Toxicol Sci 73: 135¬140.
  • Farina M, Frizzo ME, Soares FA, Schwalm FD, Dietrich MO, Zeni G, Rocha JB, Souza DO (2003b) Ebselen pro¬tects against methylmercury-induced inhibition of gluta¬mate uptake by cortical slices from adult mice. Toxicol Lett 144: 351-357.
  • Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52: 805-810.
  • Fatemi SH, Folsom TD, Reutiman TJ, Lee S (2008) Expression of astrocytic markers aquaporin 4 and con- nexin 43 is altered in brains of subjects with autism. Synapse 62: 501-507.
  • Fatemi SH (2009) Multiple pathways in prevention of immune-mediated brain disorders: Implications for the prevention of autism. J Neuroimmunol 217: 8-9.
  • Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD (2009) GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39: 223-230.
  • Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD (2010) mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 40: 743-750.
  • Fawcett JW (1992) Intrinsic neuronal determinants of regen¬eration. Trends Neurosci 15: 5-8.
  • Fawcett JW (1997) Astrocytic and neuronal factors affecting axon regeneration in the damaged central nervous system. Cell Tissue Res 290: 371-377.
  • Fernández N, Beiras R (2001) Combined toxicity of dis¬solved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea-urchin. Ecotoxicology 10: 263-271.
  • Fischer C, Fredriksson A, Eriksson P (2008) Coexposure of neonatal mice to a flame retardant PBDE 99 (2,2',4,4',5- pentabromodiphenyl ether) and methyl mercury enhances developmental neurotoxic defects. Toxicol Sci 101: 275¬285.
  • Fonfría E, Rodríguez-Farré E, Suñol C (2001) Mercury inter¬action with the GABA(A) receptor modulates the benzo- diazepine binding site in primary cultures of mouse cere- bellar granule cells. Neuropharmacology 41: 819-833.
  • Franco JL, Braga HC, Stringari J, Missau FC, Posser T, Mendes BG, Leal RB, Santos AR, Dafre AL, Pizzolatti MG, Farina M (2007) Mercurial-induced hydrogen peroxide generation in mouse brain mitochondria: protective effects of quercetin. Chem Res Toxicology 20: 1919-1926.
  • Franco JL, Posser T, Dunkley PR, Dickson PW, Mattos JJ, Martins R, Bainy AC, Marques MR, Dafre AL, Farina M (2009) Methylmercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxi- dase. Free Radic Biol Med 47: 449-457.
  • Franco JL, Posser T, Missau F, Pizzolatti MG, Dos Santos AR, Souza DO, Aschner M, Rocha JB, Dafre AL, Farina M (2010) Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmer- cury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol 30: 272-278.
  • Franco JL, Teixeira A, Meotti FC, Ribas CM, Stringari J, Garcia Pomblum SC, Moro AM, Bohrer D, Bairros AV, Dafre AL, Santos AR, Farina M (2006) Cerebellar thiol status and motor deficit after lactational exposure to methylmercury. Environ Res 102: 22-28.
  • Frisk P, Molin Y, Ilbâck NG (2008) Tissue uptake of mer¬cury is changed during the course of a common viral infection in mice. Environ Res 106: 178-184.
  • Fujimura M, Usuki F, Sawada M, Takashima A (2009) Methylmercury induces neuropathological changes with tau hyperphosphorylation mainly through the activation of the c-jun-N-terminal kinase pathway in the cerebral cortex, but not in the hippocampus of the mouse brain. Neurotoxicology 30: 1000-1007.
  • Furieri LB, Galán M, Avendaño MS, García-Redondo AB, Aguado A, Martínez S, Cachofeiro V, Bartolomé MV, Alonso MJ, Vassallo DV, Salaices M (2011) Endothelial dysfunction of rat coronary arteries after exposure to low concentrations of mercury is dependent on the level of reactive oxygen species. Br J Pharmacol 162: 1819-1831.
  • Gajkowska, B, Szumanska, G, Gadamski R (1992) Ultrastructural alterations of brain cortex in rat following intraperitoneal administration of mercuric chloride. J Hirnforsch 33: 471-476.
  • Gallagher CM, Goodman MS (2010) Hepatitis B vaccina¬tion of male neonates and autism diagnosis, NHIS 1997¬2002. J Toxicol Environ Health A 73: 1665-1677.
  • Gallagher CM, Meliker JR (2011) Total blood mercury, plasma homocysteine, methylmalonic acid and folate in US children aged 3-5 years, NHANES 1999-2004. Sci Total Environ 409: 1399-1405.
  • Galuska L, Szakáll S Jr, Emri M, Oláh R, Varga J, Garai I, Kollár J, Pataki I, Trón L (2002) PET and SPECT scans in autistic children. Orv Hetil 143: 1302-1304.
  • Gardner RM, Nyland JF, Silva IA, Ventura AM, de Souza JM, Silbergeld EK (2010) Mercury exposure, serum anti- nuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: a cross-sectional study. Environ Res 110: 345-354.
  • Gassó S, Cristofol RM, Selema G, Rosa R, Rodríguez-Farré E, Sanfeliu C (2001) Antioxidant compounds and Ca(2+) pathway blockers differentially protect against methyl- mercury and mercuric chloride neurotoxicity. J Neurosci Res 66: 135-145.
  • Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20: 269-287.
  • Geier DA, Geier MR (2006) A clinical and laboratory evalu¬ation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res 66: 182-188.
  • Geier DA, Geier MR (2007) A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J Toxicol Environ Health 70: 1723-1730.
  • Geier DA, Mumper E, Gladfelter B, Coleman L, Geier MR (2008) Neurodevelopmental disorders, maternal Rh-negativity, and Rho(D) immune globulins: a multi¬center assessment. Neuro Endocrinol Lett 29: 272-280.
  • Geier DA,Kern JK, Garver CR, Adams JB, Audhya T, Nataf R, Geier MR (2009a) Biomarkers of environmental toxicity and susceptibility in autism. J Neurol Sci 280: 101-108.
  • Geier DA, Kern JK, Geier MR (2009b) A prospective blind¬ed evaluation of urinary porphyrins verses the clinical severity of autism spectrum disorders. J Toxicol Environ Health A 72: 1585-1591.
  • Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR (2009c) A prospective study of transsulfuration bio- markers in autistic disorders. Neurochem Res 34: 386¬393.
  • Geier DA, Kern JK, Geier MR (2009d) A prospective study of prenatal mercury exposure from maternal dental amal¬gams and autism severity. Acta Neurobiol Exp (Warsz) 69: 189-197.
  • Geier DA, Kern JK, Geier MR (2010) The biological basis of autism spectrum disorders: Understanding causation and treatment by clinical geneticists. Acta Neurobiol Exp (Warsz) 70: 209-226.
  • Gericke M, Droogmans G, Nilius B (1993) Thimerosal induced changes of intracellular calcium in human endothelial cells. Cell Calcium 14: 201-207.
  • Ginhoux F, Greter M, Leboeuf M, Nand, S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analy¬sis reveals that adult microglia derive from primitive macrophages. Science 330: 841-845.
  • Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN (2010) Mitochondrial dysfunction in autism. JAMA 304: 2389-2396.
  • Glaser V, Nazari EM, Müller YM, Feksa L, Wannmacher CM, Rocha JB, de Bem AF, Farina M, Latini A (2010) Effects of inorganic selenium administration in methyl- mercury-induced neurotoxicity in mouse cerebral cortex. Int J Dev Neurosci 28: 631-637.
  • Glenn Y, Zhigang H (2006) Glial inhibition of CNS axon regeneration. Nat RevNeurosci 7: 617-627.
  • Goldshmit Y, Galea MP, Wise G, Bartlett PF, Turnley AM (2004) Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J Neurosci 24: 10064-10073.
  • Golpon HA, Puchner A, Barth P, Welte T, Wichert PV, Feddersen CO (2003) Nitric oxide-dependent vasorelaxation and endothelial cell damage caused by mercury chloride. Toxicology 192: 179-188.
  • Granot E, Kohen R (2004) Oxidative stress in childhood - in health and disease states. Clinical Nutrition 23: 3-11.
  • Gupta, SK, Ratnam, BV (2009) Cerebral perfusion abnor¬malities in children with autism and mental retardation: a segmental quantitative SPECT study. Indian Pediatr 46: 161-164.
  • Gutman J (2002) Glutathione - Your Bodies Most Powerful Protector (3rd ed). Communications Kudo.ca Inc., Montreal, CA.
  • Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL (2007) Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int J Toxicol 26: 57-69.
  • Haley BE (2005) Mercury toxicity: genetic susceptibility and synergistic effects. Medical Veritos 2: 535-542.
  • Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H, Matsuda T (2011) Non-invasive evaluation of the GABAergic/Glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord 41: 447-454.
  • Hargreaves RJ, Eley BP, Moorhouse SR, Pelling D (1988) Regional cerebral glucose metabolism and blood flow during the silent phase of methylmercury neurotoxicity in rats. J Neurochem 51: 1350-1355.
  • Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55: 530-540.
  • Herbert MR (2005) Large brains in autism: the challenge of pervasive abnormality. Neuroscientist 11: 417-440.
  • Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Kennedy DN, Filipek PA, Bakardjiev AI, Hodgson J, Takeoka M, Makris N, Caviness VS, Jr (2005) Brain asymmetries in autism and developmental language dis¬order: a nested whole-brain analysis. Brain 128: 213¬226.
  • Hessel L (2003) Mercury in vaccines. Bull Acad Natl Med 187: 1501-1510.
  • Hill CE, Beattie MS, Bresnahan JC (2001) Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp Neurol 171: 153-169.
  • Hock C, Drasch G, Golombowski S, Müller-Spahn F, Willershausen-Zönnchen B, Schwarz P, Hock U, Growdon JH, Nitsch RM (1998) Increased blood mercury levels in patients with Alzheimer's disease. J Neural Transm 105: 59-68.
  • Hoffman DJ, Eagles-Smith CA, Ackerman JT, Adelsbach TL, Stebbins KR (2011) Oxidative stress response of Forster's terns (Sterna forsteri) and Caspian terns (Hydroprogne caspia) to mercury and selenium bioaccu¬mulation in liver, kidney, and brain. Environ Toxicol Chem 30: 920-929.
  • Hogberg HT, Kinsner-Ovaskainen A, Coecke S, Hartung T, Bal-Price AK (2010) mRNA expression is a relevant tool to identify developmental neurotoxicants using an in vitro approach. Toxicol Sci 113: 95-115.
  • Holmes AS, Blaxill MF, Haley BE (2003) Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol 22: 277-285.
  • Hornig M, Chian D, Lipkin WI (2004) Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry 9: 833-845.
  • Hua J, Brun A, Berlin M (1995) Pathological changes in the Brown Norway rat cerebellum after mercury vapour exposure. Toxicology 104: 83-90.
  • Huang CF, Hsu CJ, Liu SH, Lin-Shiau SY (2008) Neurotoxicological mechanism of methylmercury induced by low-dose and long-term exposure in mice: oxidative stress and down-regulated Na+/K(+)-ATPase involved. Toxicol Lett 176: 188-197.
  • Huang CF, Liu SH, Hsu CJ, Lin-Shiau SY (2011) Neurotoxicological effects of low-dose methylmercury and mercuric chloride in developing offspring mice. Toxicol Lett 201: 196-204.
  • Huang CS, Narahashi T (1996) Mercury chloride modula¬tion of the GABAA receptor-channel complex in rat dor¬sal root ganglion neurons. Toxicol Appl Pharmacol 140: 508-520.
  • Huang CS, Narahashi T (1997) The role of G proteins in the activity and mercury modulation of GABA-induced cur¬rents in rat neurons. Neuropharmacology 36: 1623¬1630.
  • Hunter D, Russell DS (1954) Focal cerebellar and cerebel¬lar atrophy in a human subject due to organic mercury compounds. J Neurol Neurosurg Psychiatry 17: 235¬241.
  • Hultberg B, Andersson A, Isaksson A (2001) Interaction of metals and thiols in cell damage and glutathione distribu¬tion: potentiation of mercury toxicity by dithiothreitol. Toxicology 156: 93-100.
  • Ilbäck NG, Wesslen L, Fohlman J, Friman G (1996) Effects of methyl mercury on cytokines, inflammation and virus clearance in a common infection (coxsackie B3 myo¬carditis). Toxicol Lett 89: 19-28.
  • Ilbäck NG, Lindh U, Minqin R, Friman G, Watt F (2005) Selenium and mercury are redistributed to the brain dur¬ing viral infection in mice. Biol Trace Elem Res 108: 215-224.
  • Ilbäck NG, Frisk P, Mohamed N, Gadhasson IL, Blomberg J, Friman G (2007) Virus induces metal-binding proteins and changed trace element balance in the brain during the course of a common human infection (coxsackievirus B3) in mice. Sci Total Environ 381: 88-98.
  • Ito H, Mori K, Hashimoto T, Miyazaki M, Hori A, Kagami S, Kuroda Y (2005) Findings of brain 99mTc-ECD SPECT in high-functioning autism--3-dimensional ste¬reotactic ROI template analysis of brain SPECT. J Med Invest 52: 49-56.
  • Itoh K, Korogi Y, Tomiguchi S, Takahashi M, Okajima T, Sato H (2001) Cerebellar blood flow in methylmercury poisoning (Minamata disease). Neuroradiology 43: 279¬284.
  • Jacquin MF, Barcia M, Rhoades RW (1989) Structure- function relationships in rat brainstem subnucleus interpolaris: IV Projection neurons. J Comp Neurol 282: 45-62.
  • James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80: 1611-1617.
  • James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141B: 947-956.
  • James SJ, Rose S, Melnyk S, Jernigan S, Blossom S, Pavliv O, Gaylor DW (2009) Cellular and mitochon¬drial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J 23: 2374-2383.
  • Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, Lisowska-Miszczyk I, Szpanowska- Wohn A, Rauh V, Skolicki Z, Kaim I, Perera F (2006) Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemio- logic cohort study in Poland. Ann Epidemiol 16: 439¬447.
  • Jones TA, Schallert T (1992) Overgrowth and pruning of dendrites in adult rats recovering from neocortical dam¬age. Brain Res 581: 156-160.
  • Jones TA, Schallert T (1994) Use-dependent growth of pyra¬midal neurons after neocortical damage. J Neurosci 14: 2140-2152.
  • Jones TA (1999) Multiple synapse formation in the motor cortex opposite unilateral sensorimotor cortex lesions in adult rats. J Comp Neurol 414: 57-66.
  • Juárez BI, Martínez ML, Montante M, Dufour L, García E, Jiménez-Capdeville ME (2002) Methylmercury increases glutamate extracellular levels in frontal cortex of awake rats. Neurotoxicol Teratol 5516: 1-5.
  • Juárez BI, Portillo-Salazar H, González-Amaro R, Mandeville P, Aguirre JR, Jiménez ME (2005) Participation of N-methyl- D-aspartate receptors on methylmercury-induced DNA damage in rat frontal cortex. Toxicology 207: 223-229.
  • Juurlink BH, Paterson PG (1998) Review of oxidative stress in brain and spinal cord injury: suggestions for pharmaco¬logical and nutritional management strategies. J Spinal Cord Med 21: 309-334.
  • Kannan K, Jain S K (2000) Oxidative stress and apoptosis. Pathophysiology 7: 153-163.
  • Kaur P, Evje L, Aschner M, Syversen T (2010) The in vitro effects of Trolox on methylmercury-induced neurotoxic¬ity. Toxicology 276: 73-78.
  • Kemper T L, Bauman M L (1993) The contribution of neu- ropathologic studies to the understanding of autism. Neurol Clin 11: 175-187.
  • Kern JK, Waring RH, Ramsden DB, Grannemann BD, Garver CR, Trivedi MH (2004) Abnormal sulfation chemistry in autism. In: Progress in Autism Research Hauppauge (Columbus F, Ed). Nova Science Publishers, Inc., Hauppauge, NY.
  • Kern JK, Jones AM (2006) Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B 9: 485-499.
  • Kern JK, Grannemann BD, Trivedi MH, Adams J (2007) Sulfhydryl-reactive metals in autism. J Toxicol Environ Health A 70: 715-721.
  • Kern JK,Geier DA, Adams JB, Geier MR (2010) A Biomarker of mercury body-burden correlated with diagnostic domain specific clinical symptoms of autistic disorders. Biometals 23: 1043-1051.
  • Kern JK, Geier DA, Adams JB, Grannemann BD, Mehta JA, Geier MR (2011a) Toxicity biomarkers related to autism spectrum disorder diagnosis: a prospective blinded case- control study of urinary porphyrins. Pediatr Int 53: 147¬153.
  • Kern JK, Geier DA, Ayzac F, Adams JB, Mehta JA, Geier MR (2011b) Toxicity biomarkers among US children compared to a similar cohort in France: a blinded study measuring urinary porphyrins. Toxicol Environ Chem 93: 396-405.
  • Kim SH, Johnson VJ, Sharma RP (2003) Oral exposure to inorganic mercury alters T lymphocyte phenotypes and cytokine expression in BALB/c mice. Arch Toxicol 77: 613-620.
  • Kishimoto T, Oguri T, Tada M (1995) Effect of methylmercury (CH3HgCl) injury on nitric oxide synthase (NOS) activity in cultured human umbilical vascular endothelial cells. Toxicology 103: 1-7.
  • Korashy HM, El-Kadi AO (2008) The role of redox-sensi- tive transcription factors NF-kappaB and AP-1 in the modulation of the Cyp1a1 gene by mercury, lead, and copper. Free Radic Biol Med 44: 795-806.
  • Kozlowski DA, James DC, Schallert T (1996) Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesions. J Neurosci 16: 4776-4786.
  • Kumamoto T, Fukuhara N, Miyatake T, Araki K, Takahashi Y, Araki S (1986) Experimental neuropathy induced by methyl mercury compounds: autoradiographic study of GABA uptake by dorsal root ganglia. Eur Neurol 25: 269-277.
  • Laks DR (2009) Assessment of chronic mercury exposure within the U.S. population, National Health and Nutrition Examination Survey, 1999-2006. Biometals 22: 1103.
  • Lakshmi Priya MD, Geetha A (2011) Level of trace elements (copper, zinc, magnesium and selenium) and toxic ele¬ments (lead and mercury) in the hair and nail of children with autism. Biol Trace Elem Res 142: 148-158.
  • Laurence J A, Fatemi S H (2005) Glial fibrillary acidic pro¬tein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4: 206-210.
  • Lederman SA, Jones RL, Caldwell KL, Rauh V, Sheets SE, Tang D, Viswanathan S, Becker M, Stein JL, Wang RY, Perera FP (2008) Relation between cord blood mercury levels and early child development in a World Trade Center cohort. Environ Health Perspect 116: 1085¬1091.
  • Lee M, Martin-Ruiz C, Graham A, Court J, Jaros E, Perry R, Iversen P, Bauman M, Perry E (2002) Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain 125 (Pt 7): 1483-1495.
  • Lee RH, Mills EA, Schwartz N, Bell MR, Deeg KE, Ruthazer ES, Marsh-Armstrong N, Aizenman CD (2010) Neurodevelopmental effects of chronic exposure to ele¬vated levels of pro-inflammatory cytokines in a develop¬ing visual system. Neural Dev 5: 2.
  • Leong CC, Syed NI, Lorscheider FL (2001) Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mer¬cury. Neuroreport 12: 733-737.
  • Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T, Malik M (2009) Elevated immune response in the brain of autistic patients. J Neuroimmunol 207: 111-116.
  • Libbey JE, Sweeten TL, McMahon WM, Fujinami RS (2005) Autistic disorder and viral infections. J Neurovirol 11: 1-10.
  • Limke TL, Heidemann SR, Atchison WD (2004) Disruption of intraneuronal divalent cation regulation by methylmercury: are specific targets involved in altered neuronal development and cytotoxicity in methylmercury poison¬ing? Neurotoxicology 25: 741-760.
  • Liu SI, Huang CC, Huang CJ, Wang BW, Chang PM, Fang YC, Chen WC, Wang JL, Lu YC, Chu ST, Chou CT, Jan CR (2007) Thimerosal-induced apoptosis in human SCM1 gastric cancer cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol Sci 100: 109-117.
  • Lohmann C (2009) Calcium signaling and the development of specific neuronal connections. Prog Brain Res 175: 443-452.
  • Lopez-Hurtado E, Prieto JJ (2008) A microscopic study of language-related cortex in autism. Am J Biochem Biotechnol 4: 130-145.
  • Lozac NBS (2010) Central role of voltage gated calcium channels and intercellular calcium homeostasis in autism. http://wwwautismcalciumchannelopathycom/indexhtm- lAccessed 2/12/10.
  • Maddipati KR, Marnett LJ (1987) Characterization of the major hydroperoxide-reducing activity of human plas¬ma Purification and properties of a selenium-dependent glutathione peroxidase. J Biol Chem 262: 17398¬17403.
  • Magos L, Brown AW, Sparrow S, Bailey E, Snowden RT, Skipp WR (1985) The comparative toxicology of ethyl- and methylmercury. Arch Toxicol 57: 260-267.
  • Majewska MD, Urbanowicz E, Rok-Bujko P, Namyslowska I, Mierzejewski P (2010) Age-dependent lower or higher levels of hair mercury in autistic children than in healthy controls. Acta Neurobiol Exp (Warsz) 70: 196-208.
  • Manfroi CB, Schwalm FD, Cereser V, Abreu F, Oliveira A, Bizarro L, Rocha JB, Frizzo ME, Souza DO, Farina M (2004) Maternal milk as methylmercury source for suck¬ling mice: neurotoxic effects involved with the cerebellar glutamatergic system. Toxicol Sci 81: 172-178.
  • Marty MS, Atchison WD (1997) Pathways mediating Ca2+ entry in rat cerebellar granule cells following in vitro exposure to methyl mercury. Toxicol Appl Pharmacol 147: 319-330.
  • Mazerik JN, Hagele T, Sherwani S, Ciapala V, Butler S, Kuppusamy ML, Hunter M, Kuppusamy P, Marsh CB, Parinandi NL (2007a) Phospholipase A2 activation regu¬lates cytotoxicity of methylmercury in vascular endothe¬lial cells. Int J Toxicol 26: 553-569.
  • Mazerik JN, Mikkilineni H, Kuppusamy VA, Steinhour E, Peltz A, Marsh CB, Kuppusamy P, Parinandi NL (2007b) Mercury activates phospholipase a(2) and induces forma¬tion of arachidonic Acid metabolites in vascular endothe¬lial cells. Toxicol Mech Methods 17: 541-557.
  • Meyer U, Handschel J, Wiesmann P, Meyer T (2009) Fundamentals of Tissue Engineering and Regenerative Medicine. Springer-Verlag, Berlin, Heidelberg, DE.
  • Migdal C, Foggia L, Tailhardat M, Courtellemont P, Haftek M, Serres M (2010) Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 274: 1-9.
  • Mitchell J, Gallagher PJ (1980) Peripheral neuropathy fol¬lowing intraneural injection of mercury compounds. Arch Toxicol 46: 257-264.
  • Mohan CV, Gupta TRC, Shetty HPC, Menon NR (1986) Combined toxicity of mercury and cadmium to the tropical green mussel. Perna viridis Dis Aquat Organ 2: 65-72. Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, Altaye M, Wills-Karp M. (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172: 198-205.
  • Monnet-Tschudi F, Zurich MG, Honegger P (1996) Comparison of the developmental effects of two mercury compounds on glial cells and neurons in aggregate cul¬tures of rat telencephalon. Brain Res 741: 52-59.
  • Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mer¬cury and lead in the etiology of neurodegenerative dis¬eases. Rev Environ Health 21: 105-117.
  • Monroe RK, Halvorsen SW (2009) Environmental toxicants inhibit neuronal Jak tyrosine kinase by mitochondrial disruption. Neurotoxicology 30: 589-598.
  • Moretto MB, Funchal C, Santos AQ, Gottfried C, Boff B, Zeni G, Pureur RP, Souza DO, Wofchuk S, Rocha JB (2005) Ebselen protects glutamate uptake inhibition caused by methyl mercury but does not by Hg2+. Toxicology 214: 57-66.
  • Morgan JT, Chana G, Pardo CA, Achim C, Semendeferi K, Buckwalter J, Courchesne E, Everall IP (2010) Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry 68: 368-376.
  • Morken TS, Sonnewald U, Aschner M, Syversen T (2005) Effects of methylmercury on primary brain cells in mono- and co-culture. Toxicol Sci 87: 169-175.
  • Moss DW, Bates TE (2001) Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cel¬lular function. Eur J Neurosci 13: 529-538.
  • Mutkus L, Aschner JL, Syversen T, Aschner M (2005) Methylmercury alters the in vitro uptake of glutamate in GLAST- and GLT-1-transfected mutant CHO-K1 cells. Biol Trace Elem Res 107: 231-245.
  • Mutter J, Naumann J, Sadaghiani C, Walach H, Drasch G (2004) Amalgam studies: disregarding basic principles of mercury toxicity. Int J Hyg Environ Health 207: 391¬397.
  • Mutter J (2011) Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. J Occup Med Toxicol 6: 2.
  • Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N, Manna SK (2011) A study of nuclear transcription factor- kappa B in childhood autism. PLoS One 6: e19488.
  • Nakanishi H, Hayashi Y, Wu Z (2011) The role of micro¬glial mtDNA damage in age-dependent prolonged LPS- induced sickness behavior. Neuron Glia Biol 28: 1-7.
  • Narahashi T, Ma JY, Arakawa O, Reuveny E, Nakahiro M (1994) GABA receptor-channel complex as a target site of mercury, copper, zinc, and lanthanides. Cell Mol Neurobiol 14: 599-621.
  • Nataf R, Skorupka C, Amet L, Lam A, Springbett A, Lathe R (2006) Porphyinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol Applied Pharmacol 14: 99-108.
  • Nataf R, Skorupka C, Lam A, Springbett A, Lathe R (2008) Porphyrinuria in childhood autistic disorder is not associ¬ated with urinary creatinine deficiency. Pediatr Int 50: 528-532.
  • Noda M, Wataha JC, Lockwood PE, Volkmann KR, Kaga M, Sano H (2003) Sublethal, 2-week exposures of dental material components alter TNF-alpha secretion of THP-1 monocytes. Dent Mater 19: 101-105.
  • Nyland JF, Wang SB, Shirley DL, Santos EO, Ventura AM, de Souza JM, Silbergeld EK (2011) Fetal and maternal immune responses to methylmercury exposure: a cross- sectional study. Environ Res 111: 584-589.
  • Nyland JF, Fairweather D, Shirley DL, Davis SE, Rose NR, Silbergeld EK (2012) Low dose inorganic mercury increases severity and frequency of chronic coxsackievi- rus-induced autoimmune myocarditis in mice. Toxicol Sci 125: 134-143.
  • Ohnishi T, Matsuda H, Hashimoto T, Kunihiro T, Nishikawa M, Uema T, Sasaki M (2000) Abnormal regional cerebral blood flow in childhood autism. Brain 123: 1838-1844.
  • Olanow CW, Arendash GW (1994) Metals and free radicals in neurodegeneration. Curr Opin Neurol 7: 548-558.
  • Olczak M, Duszczyk M, Mierzejewski P, Wierzba-Bobrowicz T, Majewska MD (2010) Lasting neuropathological changes in rat brain after intermittent neonatal adminis¬tration of thimerosal. Folia Neuropathol 48: 258-269.
  • Olivieri G, Brack C, Müller-Spahn F, Stähelin HB, Herrmann M, Renard P, Brockhaus M, Hock C (2000) Mercury induces cell cytotoxicity and oxidative stress and increas¬es beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 74: 231¬236.
  • Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Müller-Spahn F (2002) The effects of beta- estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta- amyloid secretion. Neuroscience 113: 849-855.
  • O'Neill J, Levitt J, McCracken J, Toga A, Alger J (2003) Anterior cingulate and amygdalar 1H MRS abnormalities in childhood autism, in Abstracts of the 11th Scientific Meeting Toronto, ISMRM
  • Ono H, Sakamoto A, Sakura N (2001) Plasma total glutathi¬one concentrations in healthy pediatric and adult subjects. Clin Chim Acta 312: 227-229.
  • Opitz H, Schweinsberg F, Grossman T, Wendt-Gallitelli M F, Meyermann R (1996) Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin Neuropathol 15: 139-144.
  • Ou YC, White CC, Krejsa CM, Ponce RA, Kavanagh TJ, Faustman EM (1999) The role of intracellular glutathi- one in methylmercury-induced toxicity in embryonic neuronal cells. Neurotoxicology 20: 793-804.
  • Page LA, Daly E, Schmitz N, Simmons A, Toal F, Deeley Q, Ambery F, McAlonan GM, Murphy KC, Murphy DG (2006) In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am J Psychiatry 163: 2189-2192.
  • Pal PB, Pal S, Das J, Sil PC (2011) Modulation of mercury- induced mitochondria-dependent apoptosis by glycine in hepatocytes. Amino Acids 42: 1669-1683.
  • Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127 (Pt 12): 2572-2583.
  • Palmer RF, Blanchard S, Stein Z, Mandell D, Miller C (2006) Environmental mercury release, special education rates, and autism disorder: an ecological study of Texas. Health Place 12: 203-209.
  • Palmer RF, Blanchard S, Wood R (2009) Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health Place 15: 18-24.
  • Palmieri L, Persico AM (2010) Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim Biophys Acta 1797: 1130-1137.
  • Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, Hager J, Rousseau F, Curatolo P, Manzi B, Militerni R, Bravaccio C, Trillo S, Schneider C, Melmed R, Elia M, Lenti C, Saccani M, Pascucci T, Puglisi-Allegra S, Reichelt KL, Persico AM (2010) Altered calcium homeo- stasis in autism-spectrum disorders: evidence from bio¬chemical and genetic studies of the mitochondrial aspar- tate/glutamate carrier AGC1. Mol Psychiatry 15: 38-52.
  • Pamphlett R, Png FY (1998) Shrinkage of motor axons fol¬lowing systemic exposure to inorganic mercury. J Neuropathol Exp Neurol 57: 360-366.
  • Papp A, Pecze L, Szabo A, Vezer T (2006) Effects on the central and peripheral nervous activity in rats elicited by acute administration of lead, mercury and manganese, and their combinations. J Appl Toxicol 26: 374-380.
  • Park HJ, Youn HS (2011) Mercury induces the expression of cyclooxygenase-2 and inducible nitric oxide synthase. Toxicol Ind Health [Epub ahead of print]
  • Park SE, Dantzer R, Kelley KW, McCusker RH (2011) Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. J Neuroinflammation 8: 12.
  • Pa§ca SP, Dronca E, Kaucsar T, Craciun EC, Endreffy E, Ferencz BK, Iftene F, Benga I, Cornean R, Banerjee R, Dronca M (2009) One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J Cell Mol Med 13: 4229-4238.
  • Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O'Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL (2009) Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int J Toxicol 28: 190-206.
  • Pendergrass JC, Haley BE, Vimy MJ, Winfield SA, Lorscheider FL (1997) Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 18: 315-324.
  • Perry S W, Norman J P, Litzburg A, Gelbard H A (2004) Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res 78: 485-492.
  • Pilsner JR, Lazarus AL, Nam DH, Letcher RJ, Sonne C, Dietz R, Basu N (2010) Mercury-associated DNA hypom- ethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenet- ics in wildlife. Mol Ecol 19: 307-314.
  • Podzimek S, Tomka M, Nemeth T, Himmlova L, Matucha P, Prochazkova (2010) Influence of metals on cytokines production in connection with successful implantation therapy in dentistry. J Neuro Endocrinol Lett 31: 657¬662.
  • Pollonini L, Patidar U, Situ N, Rezaie R, Papanicolaou AC, Zouridakis G (2010) Functional connectivity networks in the autistic and healthy brain assessed using. Granger causality Conf Proc IEEE Eng Med Biol Soc 1: 1730¬1733.
  • Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J (2001) Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57: 1618¬1628.
  • Ray B, Long JM, Sokol DK, Lahiri DK (2011) Increased secreted amyloid precursor protein-a (sAPPa) in severe autism: proposal of a specific, anabolic pathway and putative biomarker. PLoS One 6: e20405.
  • Reynolds J N, Racz W J (1987) Effects of methylmercury on the spontaneous and potassium-evoked release of endog¬enous amino acids from mouse cerebellar slices. Can J Physiol Pharmacol 65: 791-798.
  • Riikonen R, Makkonen I, Vanhala R, Turpeinen U, Kuikka J, Kokki H (2006) Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev Med Child Neurol 48: 751-755.
  • Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A (1986) Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research reports. Am J Psychiat 143: 862-866.
  • Roda E, Coccini T, Acerbi D, Castold A, Bernocchi G, Manzo L (2008) Cerebellum cholinergic muscarinic receptor (subtype-2 and -3) and cytoarchitecture after developmen¬tal exposure to methylmercury: an immunohistochemical study in rat. J Chem Neuroanat 35: 285-294.
  • Roegge CS, Wang VC, Powers BE, Klintsova AY, Villareal S, Greenough WT, Schantz SL (2004) Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicol Sci 77: 315-324.
  • Roegge CS, Morris JR, Villareal S, Wang VC, Powers BE, Klintsova AY, Greenough WT, Pessah IN, Schantz SL (2006) Purkinje cell and cerebellar effects following developmental exposure to PCBs and/or MeHg. Neurotoxicol Teratol 28: 74-85.
  • Rose S, Melnyk S, Savenka A, Hubanks A, Jernigan S, Cleves M, James SJ (2008) The frequency of polymor¬phisms affecting lead and mercury toxicity among chil¬dren with autism. Am J Biochem Biotechnol 4: 85-94.
  • Rosengren LE, Ahlsen G, Belfrage M, Gillberg C, Haglid KG, Hamberger A (1992) A sensitive ELISA for glial fibrillary acidic protein: application in CSF of children. J Neurosci Methods 44: 113-119.
  • Rubakhin SS, Györi J, Carpenter DO, Salanki J (1995) HgCl2 potentiates GABA activated currents in Lymnaea stagnalis L neurons. Acta Biol Hung 46: 431-444.
  • Rumbeiha WK, Fitzgerald SD, Braselton WE, Roth RA, Kaneene JB (2000) Potentiation of mercury-induced nephrotoxicity by endotoxin in the Sprague-Dawley rat. Toxicology 149: 75-87.
  • Sajdel-Sulkowska EM, Lipinsk, B, Windom H, Audhya T, McGinnis W (2008) Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol 4: 73-84.
  • Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 8: 366-372.
  • Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N (2011) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 10: 43-48.
  • Sakamoto M, Kakita A, Wakabayashi K, Takahashi H, Nakano A, Akagi H (2002) Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: a study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res 949: 51-59.
  • Salmon W, Daughaday W (1957) A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49: 825-836.
  • Santos M, Uppal N, Butti C, Wicinski B, Schmeidler J, Giannakopoulos P, Heinsen H, Schmitz C, Hof PR (2011) von Economo neurons in autism: A stereologic study of the frontoinsular cortex in children. Brain Res 1380: 206-217.
  • Sasaki M, Nakagawa E, Sugai K, Shimizu Y, Hattori A, Nonoda Y, Sato N (2010) Brain perfusion SPECT and EEG findings in children with autism spectrum disorders and medically intractable epilepsy. Brain Dev 32: 776-782.
  • Schwartz ED, Flanders AE (2006) Spinal Trauma: Imaging, Diagnosis, and Management. Lippincott Williams & Wilkins, Philadelphia, PA.
  • Schumann CM, Barnes CC, Lord C, Courchesne E (2009) Amygdala enlargement in toddlers with autism related to severity of social and communication impairments. Biol Psychiatry 66: 942-949.
  • Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N, Pierce K, Hagler D, Schork N, Lord C, Courchesne EJ (2010) Longitudinal magnetic resonance imaging study of cortical devel¬opment through early childhood in autism. Neurosci 30:4419-4427.
  • Seira O, Gavín R, Gil V, Llorens F, Rangel A, Soriano E, del Río JA(2010) Neurites regrowth of cortical neurons by GSK3beta inhibition independently of Nogo receptor 1. J Neurochem 113: 1644-1658.
  • Shen X, Lee K, König R (2001) Effects of heavy metal ions on resting and antigen-activated CD4(+) T cells. Toxicology 169: 67-80.
  • Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Minabe Y, Sugiyama T, Kawai M, Iyo M, Takei N, Mori N (2006) Increased serum levels of gluta¬mate in adult patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30: 1472-1477.
  • Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neu- roimaging. Trends Neurosci 27: 489-495.
  • Sirois JE, Atchison WD (2000) Methylmercury affects mul¬tiple subtypes of calcium channels in rat cerebellar gran¬ule cells. Toxicol Appl Pharmacol 167: 1-11.
  • Soares FA, Farina M, Santos FW, Souza D, Rocha JB, Nogueira CW (2003) Interaction between metals and chelating agents affects glutamate binding on brain syn- aptic membranes. Neurochem Res 28: 1859-1865.
  • Sokol DK, Chen D, Farlow MR, Dunn DW, Maloney B, Zimmer JA, Lahiri DK (2006) High levels of Alzheimer beta-amyloid precursor protein (APP) in children with severely autistic behavior and aggression. J Child Neurol 21: 444-449.
  • Sorensen FW, Larsen JO, Eide R, Schionning JD (2000) Neuron loss in cerebellar cortex of rats exposed to mer¬cury vapor: a stereological study. Acta Neuropathol 100: 95-100.
  • Stacchiotti A, Bonomini F, Favero G, Rossini C, Rodella LF, Rezzani R (2010) Stress proteins in experimental nephro¬toxicity: a ten year experience. Ital J Anat Embryol 115: 153-158.
  • Stankovic R (2006) Atrophy of large myelinated motor axons and declining muscle grip strength following mer¬cury vapor inhalation in mice. Inhal Toxicol 18: 57-69.
  • Stankovic RK, Shingde M, Cullen KM (2005) The experi¬mental toxicology of metallic mercury on the murine peripheral motor system: a novel method of assessing axon calibre spectra using the phrenic nerve. J Neurosci Methods 147: 114-125.
  • Stichel CC, Muller HW (1998) The CNS lesion scar: new vistas on an old regeneration barrier. Cell Tissue Res 294: 1-9.
  • Stigler KA, McDonald BC, Anand A, Saykin AJ, McDougle CJ (2011) Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res 1380: 146-461.
  • Stohs SJ (1995) The role of free radicals in toxicity and dis¬ease. J Basic Clin Physiol Pharmacol 6: 205-228.
  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18: 321-336.
  • Stoiber T, Bonacker D, Böhm KJ, Bolt HM, Thier R, Degen GH, Unger E (2004) Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutat Res 563: 97-106.
  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neu¬roinflammation: a pathological perspective. J Neuroinflammation 1: 14.
  • Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4: 371-379.
  • Stringari J, Meotti FC, Souza DO, Santos AR, Farina M (2006) Postnatal methylmercury exposure induces hyper- locomotor activity and cerebellar oxidative stress in mice: dependence on the neurodevelopmental period. Neurochem Res 31: 563-569.
  • Stringari J, Nunes AK, Franco JL, Bohrer D, Garcia SC, Dafre AL, Milatovic D, Souza DO, Rocha JB, Aschner M, Farin M (2008) Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain. Toxicol Appl Pharmacol 227: 147-154.
  • Sunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM (2009) Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles 23: 14.
  • Suzuki N, Yamamoto M, Watanabe K, Kambegawa A, Hattori A (2004) Both mercury and cadmium directly influence calcium homeostasis resulting from the sup¬pression of scale bone cells: the scale is a good model for the evaluation of heavy metals in bone metabolism. J Bone Miner Metab 22: 439-446.
  • Taber KH, Hurley RA (2008) Mercury exposure: effects across the lifespan. J Neuropsychiatry Clin Neurosci 20: iv-389.
  • Takeuchi T, Eto K, Oyanag S, Miyajima H(1978) Ultrastructural changes of human sural nerves in the neu¬ropathy induced by intrauterine methylmercury poisoning (so-called fetal Minamata disease). Virchows Arch B Cell Patho 27: 137-154.
  • Tang Y, Zhang W, Tang H, Li P (2011) Protective effects of IGF-1 on neurons under condition of hypoxia and the role of PI3K signal pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban 36: 21-26.
  • Taylor WR (1996) Response properties of long-range axon- bearing amacrine cells in the dark-adapted rabbit retina. Vis Neurosci 13: 599-604.
  • Teeling JL, Perry VH (2009) Systemic infection and inflamma¬tion in acute CNS injury and chronic neurodegeneration: underlying mechanisms. Neuroscience 158: 1062-1073.
  • Toimela TA, Tähti H (1995) Effects of mercury, methylmer¬cury and aluminium on glial fibrillary acidic protein expression in rat cerebellar astrocyte cultures. Toxicol In Vitro 9: 317-325.
  • Turner CJ, Bhatnagar MK, Yamashiro S (1981) Ethanol potentiation of methyl mercury toxicity: a preliminary report. J Toxicol Environ Health 7: 665-668.
  • Ueha-Ishibashi T, Oyama Y, Nakao H, Umebayashi C, Nishizaki Y, Tatsuishi T, Iwase K, Murao K, Seo H (2004) Effect of thimerosal, a preservative in vaccines, on intra¬cellular Ca2+ concentration of rat cerebellar neurons. Toxicology 195: 77-84.
  • US Department of the Interior/U.S. Geological Survey (2002) URL: http://www.usgs.gov/themes/factsheet/146- 00/ Accessed 1/26/2009.
  • Vajda FJ (2002) Neuroprotection and neurodegenerative disease J Clin Neurosci 9: 4-8.
  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12: 1161-1208.
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44-84.
  • Vanhala R, Turpeinen U, Riikonen R (2001) Low levels of insulin-like growth factor-I in cerebrospinal fluid in chil¬dren with autism. Dev Med Child Neurol 43: 614-616.
  • van Vliet E, Stoppini L, Balestrino M, Eskes C, Griesinger C, Sobanski T, Whelan M, Hartung T, Coecke S (2007) Electrophysiological recording of re-aggregating brain cell cultures on multi-electrode arrays to detect acute neurotoxic effects. Neurotoxicology 28: 1136-1146.
  • Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005) Neuroglial activation and neuroinflam¬mation in the brain of patients with autism. Ann Neurol 57: 304.
  • Vendemiale G, Grattagliano I, Altomare E (1999) An update on the role of free radicals and antioxidant defense in human disease. J Clin Lab Res 29: 49-55.
  • Vendrell I, Carrascal M, Vilaro MT, Abian J, Rodriguez- Farré E, Sunol C (2007) Cell viability and proteomic analysis in cultured neurons exposed to methylmercury. Hum Exp Toxicol 26: 263-272.
  • Vicente E, Boer M, Leite M, Silva M, Tramontina F, Porciùncula L, Dalmaz C, Gonçalves CA (2004) Cerebrospinal fluid S100B increases reversibly in neo¬nates of methyl mercury-intoxicated pregnant rats. Neurotoxicology 25: 771-777.
  • Vogel DG, Margolis RL, Mottet NK (1985) The effects of methyl mercury binding to microtubules. Toxicol Appl Pharmacol 80: 473-486.
  • Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky VA, Deth RC (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 9: 358-370.
  • Wan CY, Schlaug G (2010) Neural pathways for language in autism: the potential for music-based treatments. Future Neurol 5: 797-805.
  • Warfvinge K (2000) Mercury distribution in the neonatal and adult cerebellum after mercury vapor exposure of pregnant squirrel monkeys. Environmental Res 83: 93-101.
  • Waring RH, Klovrza LV (2000) Sulphur metabolism in autism. J Nutr Environ Med 10: 25-32.
  • Wass S (2011) Distortions and disconnections: disrupted brain connectivity in autism. Brain Cogn 75: 18-28.
  • Wei H, Zou H, Sheikh AM, Malik M, Dobkin C, Brown WT, Li X (2011) IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and syn- aptic formation. J Neuroinflammation 8: 52.
  • Wei H, Chadman KK, McCloskey DP, Sheikh AM, Malik M, Brown WT, Li X (2012) Brain IL-6 elevation causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochim Biophys Acta 1822: 831-842.
  • Whitney ER, Kemper TL, Bauman ML, Rosene DL, Blatt GJ (2008) Cerebellar purkinje cells are reduced in a sub¬population of autistic brains: a stereological experiment using Calbindin-D28k. Cerebellum 7: 406-416.
  • Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ (2009) Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res 87: 2245-2254.
  • Wiggers GA, Peganha FM, Briones, AM, Pérez-Girón, JV, Miguel, M, Vassallo, DV, Cachofeiro, V, Alonso, MJ, Salaices, M (2008) Low mercury concentrations cause oxidative stress and endothelial dysfunction in conduc¬tance and resistance arteries. Am J Physiol Heart Circ Physiol 295: H1033-H1043.
  • Wilcox J, Tsuang MT, Ledger E, Algeo J, Schnurr T (2002) Brain perfusion in autism varies with age. Neuropsychobiology 46: 13-16.
  • Windham GC, Zhang L, Gunier R, Croen LA, Grether JK (2006) Autism spectrum disorders in relation to distribu¬tion of hazardous air pollutants in the San Francisco Bay area. Environ Health Perspect 114: 1438-1444.
  • Wolf MB, Baynes JW (2007) Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. Biometals 20: 73-81.
  • Wyrembek P, Szczuraszek K, Majewska MD, Mozrzymas JW (2010) Intermingled modulatory and neurotoxic effects of thimerosal and mercuric ions on electrophysi- ological responses to GABA and NMDA in hippocampal neurons. J Physiol Pharmacol 61: 753-758.
  • Yao Y, Walsh WJ, McGinnis WR, Pratico D (2006) Altered vascular phenotype in autism: correlation with oxidative stress. Arch Neurol 63: 1161-1164.
  • Yin Z, Milatovic D, Aschner JL, Syversen T, Rocha JB, Souza DO, Sidoryk M, Albrecht J, Aschner M (2007) Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astro- cytes. Brain Res 1131: 1-10.
  • Yin Z, Lee E, Ni M, Jiang H, Milatovic D, Rongzhu L, Farina M, Rocha JB, Aschner M (2011) Methylmercury- induced alterations in astrocyte function are attenuated by Ebselen. Neurotoxicology 32: 291-299.
  • Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophys-iological implications. Acta Neuropathol 113: 559-568.
  • Yip J, Soghomonian JJ, Blatt GJ (2009) Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridiza¬tion study. Autism Res 2: 50-59.
  • Youn SI, Jin SH, Kim SH, Lim S (2010) Porphyrinuria in Korean children with autism: correlation with oxidative stress. J Toxicol Environ Health A73: 701-710.
  • Youn YH, Chuu JJ, Liu SH, Lin-Shiau SY (2002) Neurotoxic mechanism of cinnabar and mercuric sulfide on the ves-tibulo-ocular reflex system of guinea pigs. Toxicol Sci 67: 256-263.
  • Young AM, Campbell E, Lynch S, Suckling J, Powis SJ (2011) Aberrant NF-kappaB expression in autism spec¬trum condition: a mechanism for neuroinflammation. Front Psychiatry 2: 27.
  • Young HA, Geier DA, Geier MR (2008) Thimerosal expo¬sure in infants and neurodevelopmental disorders: an assessment of computerized medical records in the Vaccine Safety Datalink. J Neurol Sci 271: 110-118.
  • Yu SN, Liao M, Huang CY (2008) Effects of cadmium and mercury combined pollution on soil urease and acid phos- phatase activities. Ying Yong Sheng Tai Xue Bao 19: 1841-1847.
  • Yu W, Cook C, Sauter C, Kuriyama R, Kaplan PL, Baas PW (2000) Depletion of a microtubule-associated motor pro¬tein induces the loss of dendritic identity. J Neurosci 20: 5782-5791.
  • Zhang Y, Gao D, Bolivar VJ, Lawrence DA (2011) Induction of autoimmunity to brain antigens by developmental mer¬cury exposure. Toxicol Sci 119: 270-280.
  • Zieminska E, Toczylowska B, Stafiej A, Lazarewicz JW (2010) Low molecular weight thiols reduce thimerosal neurotoxicity in vitro: modulation by proteins. Toxicology 276: 154-163.
  • Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30: 14595¬14609.
  • Zilbovicius M, Garreau,B, Samson Y, Remy, P, Barthélémy C, Syrota A, Lelord G (1995) Delayed maturation of the frontal cortex in childhood autism. Am J Psychiatry 152: 248-252.
  • Zilbovicius M, Boddaert N, Belin P, Poline JB, Remy P, Mangin JF, Thivard L, Barthélémy C, Samson Y (2000) Temporal lobe dysfunction in childhood autism: a PET study Positron emission tomography. Am J Psychiatry 157: 1988-1993.
  • Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstein S, Varsou A, Heyes M P (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neuro 33: 195-201.
  • Zwiener RJ, Kurt TL, Ghali F, Day LC, Timmon CF (1994) Potentiation of acetaminophen hepatotoxicity in a child with mercury poisoning. J Pediatr Gastroenterol Nutr 19: 242-245.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a561d8f7-dcb7-4d3a-87c3-4a819377ce9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.