PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 07 |

Tytuł artykułu

Diverse regulation by sucrose of enzymes involved in storage lipid breakdown in germinating lupin seeds

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The regulatory function of sucrose in the activity of lipid-degrading enzymes was investigated in germinating seeds of yellow lupin (Lupinus luteus L.), white lupin (Lupinus albus L.) and Andean lupin (Lupinus mutabilis Sweet). The study was conducted on isolated embryo axes, excised cotyledons and seedlings cultured in vitro for 96 h on medium with 60 mM sucrose or without the sugar. The activity of lipase (lipolysis), acyl- CoA oxidase and catalase (fatty acid β-oxidation) was enhanced in all studied organs cultured on medium without sucrose. The activity of cytosolic aconitase (glyoxylate cycle) was stimulated by sucrose in seedling axes and isolated embryo axes, whereas in seedling cotyledons and excised cotyledons, it was inhibited. The regulatory function of sucrose in phosphoenolpyruvate carboxykinase (gluconeogenesis) was observed only in isolated embryo axes and the activity was lower in carbohydrate deficiency conditions. The peculiar features of storage lipid breakdown in germinating lupin seeds and its regulation by sucrose are discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

07

Opis fizyczny

p.2147-2156,fig.,ref.

Twórcy

autor
  • Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Physiology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133:1251–1263
  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: b-oxidation in signalling and development. Trends Plant Sci 11:124–132. doi:10.1016/j.tplants.2006.01.005
  • Barros M, Fleuri LF, Macedo GA (2010) Seed lipases: sources, applications and properties—a review. Braz J Chem Eng 27:15–29. doi:10.1590/S0104-66322010000100002
  • Bassham DC (2007) Plant autophagy—more than a starvation response. Curr Opin Plant Biol 10:587–593. doi:10.1016/j.pbi.2007.06.006
  • Borek S, Nuc K (2011) Sucrose controls storage lipid breakdown on gene expression level in germinating yellow lupine (Lupinus luteus L.) seeds. J Plant Physiol 168:1795–1803. doi:10.1016/j.jplph.2011.05.016
  • Borek S, Ratajczak W (2002) Sugars as a metabolic regulator of storage protein mobilization in germinating seeds of yellow lupine (Lupinus luteus L.). Acta Physiol Plant 24:425–434. doi: 10.1007/s11738-002-0039-z
  • Borek S, Ratajczak L (2010) Storage lipids as a source of carbon skeletons for asparagine synthesis in germinating seeds of yellow lupine (Lupinus luteus L.). J Plant Physiol 167:717–724. doi: 10.1016/j.jplph.2009.12.010
  • Borek S, Morkunas I, Ratajczak W, Ratajczak L (2001) Metabolism of amino acids in germinating yellow lupine seeds III. Breakdown of arginine in sugar-starved organs cultivated in vitro. Acta Physiol Plant 23:141–148. doi:10.1007/s11738-001-0001-5
  • Borek S, Ratajczak W, Ratajczak L (2003) A transfer of carbon atoms from fatty acids to sugars and amino acids in yellow lupine (Lupinus luteus L.) seedlings. J Plant Physiol 160:539–545. doi: 10.1078/0176-1617-00763
  • Borek S, Ratajczak W, Ratajczak L (2006) Ultrastructural and enzymatic research on the role of sucrose in mobilization of storage lipids in germinating yellow lupine seeds. Plant Sci 170: 441–452. doi:10.1016/j.plantsci.2005.09.011
  • Borek S, Pukacka S, Michalski K, Ratajczak L (2009) Lipid and protein accumulation in developing seeds of three lupine species: Lupinus luteus L., Lupinus albus L., and Lupinus mutabilis Sweet. J Exp Bot 60:3453–3466. doi:10.1093/jxb/erp186
  • Borek S, Kubala S, Kubala S, Ratajczak L (2011) Comparative study of storage compound breakdown in germinating seeds of three lupine species. Acta Physiol Plant 33:1953–1968. doi:10.1007/s11738-011-0744-6
  • Borek S, Kubala S, Kubala S (2012a) Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet). I. Mobilization of storage protein. Acta Physiol Plant 34:701–711. doi:10.1007/s11738-011-0870-1
  • Borek S, Pukacka S, Michalski K (2012b) Regulation by sucrose of storage compounds breakdown in germinating seeds of yellow lupine (Lupinus luteus L.), white lupine (Lupinus albus L.) and Andean lupine (Lupinus mutabilis Sweet). II. Mobilization of storage lipid. Acta Physiol Plant 34:1199–1206. doi:10.1007/s11738-011-0916-4
  • Borek S, Galor A, Paluch E (2013) Asparagine enhances starch accumulation in developing and germinating lupin seeds. J Plant Growth Reg. doi:10.1007/s00344-012-9313-5
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
  • Brouquisse R, James F, Rajmond P, Pradet A (1991) Study of glucose starvation in excised maize root tips. Plant Physiol 96:619–626. doi:10.1104/pp.96.2.619
  • Brouquisse R, Gaudillere JP, Raymond P (1998) Induction of a carbon-starvation-related proteolysis in whole maize plants submitted to light/dark cycles and to extended darkness. Plant Physiol 117:1281–1291. doi:10.1104/pp.117.4.1281
  • Chen ZH, Walker RP, Técsi LI, Lea PJ, Leegood RC (2004) Phosphoenolpyruvate carboxykinase in cucumber plants is increased both by ammonium and by acidification, and is present in phloem. Planta 219:48–58. doi:10.1007/s00425-004-1220-y
  • Contento AL, Bassham DC (2010) Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation. Plant Physiol Biochem 48:232–238. doi:10.1016/j.plaphy.2010.01.004
  • Dieuaide M, Brouquisse R, Pradet A, Raymond P (1992) Increased fatty acid b-oxidation after glucose starvation in maize root tips. Plant Physiol 99:595–600. doi:10.1104/pp.99.2.595
  • Dieuaide M, Couée I, Pradet A, Raymond P (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes: evidence for mitochondrial fatty acid b-oxidation and acyl-CoA dehydrogenase activity in higher plant. Biochem J 296:199–207
  • Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A (2008) The major proteins of lupin seed: Characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci Tech 19:624–633. doi:10.1016/j.tifs.2008.07.002
  • Gancedo J (1992) Carbon catabolite repression in yeast. Eur J Biochem 206:297–313
  • Gerhard B (1987) Peroxisome and fatty acid degradation. Methods Enzymol 148:516–525
  • Gonzali S, Loreti E, Solfanelli C, Novi G, Alpi A, Perata P (2006) Identification of sugar-modulated genes and evidence for in vivo sugar sensing in Arabidopsis. J Plant Res 119:115–123. doi: 10.1007/s10265-005-0251-1
  • Graham IA (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142. doi:10.1146/annurev.arplant.59.032607.092938
  • Graham IA, Derby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6:761–772. doi:10.1105/tpc.6.5.761
  • Heller R (1954) Recherches sur la nutrition minérale des tissus végétaux ciltivés in vitro. Annu Sci Nat Bot Biol Veg 14:1–223
  • Inoue Y, Moriyasu Y (2006) Autophagy is not a main contributor to the degradation of phospholipids in tobacco cells cultured under sucrose starvation conditions. Plant Cell Physiol 47:471–480. doi:10.1093/pcp/pcj013
  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. The Arabidopsis Book, American Society of Plant Biologist. http://www.bioone.org/doi/abs/10.1199/tab.0123. Accessed 11 September 2009
  • Kennedy MC, Emptage MH, Dreyer JL, Beinert H (1983) The role of iron in the activation-inactivation of aconitase. J Biol Chem 258:11098–11105
  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 47:509–540. doi: 10.1146/annurev.arplant.47.1.509
  • Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome Res 16:414–427. doi:10.1101/gr.4237406
  • Lück H (1965) Catalase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 885–888
  • Marriott KM, Northcote DH (1975) The induction of enzyme activity in the endosperm of germinating castor bean. Biochem J 152: 65–70
  • Penfield S, Graham I, Graham IA (2005) Storage reserve mobilization in germinating oilseeds: Arabidopsis as a model system. Biochem Soc Trans 33:380–383
  • Pracharoenwattana I, Smith SM (2008) When is a peroxisome not a peroxisome? Trends Plant Sci 13:522–525. doi:10.1016/j.tplants.2008.07.003
  • Pracharoenwattana I, Cornah JE, Smith SM (2007) Arabidopsis peroxisomal malate dehydrogenase functions in b-oxidation but not in the glyoxylate cycle. Plant J 50:381–390. doi:10.1111/j.1365-313X.2007.03055.x
  • Price J, Laxmi A, Martin SKST, Jang JC (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150. doi:10.1105/tpc.104.022616
  • Quettier AL, Eastmond PJ (2009) Storage oil hydrolysis during early seedling growth. Plant Physiol Biochem 47:485–490. doi: 10.1016/j.plaphy.2008.12.005
  • Ramon M, Rolland F, Sheen J (2008) Sugar sensing and signaling. The Arabidopsis Book, American Society of Plant Biologists. http://www.bioone.org/doi/abs/10.1199/tab.0117. Accessed 22 October 2008
  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709. doi:10.1146/annurev.arplant.57.032905.105441
  • Saier M (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol Rev 53:109–120
  • Santos CN, Ferreira RB, Teixeira AR (1997) Seeds proteins of Lupinus mutabilis. J Agric Food Chem 45:3821–3825. doi: 10.1021/jf970075v
  • Smeekens S, Rook F (1997) Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 115:7–13. doi:10.1104/pp.115.1.7
  • Smeekens S, Jingkun M, Johannes H, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13:274–279. doi:10.1016/j.pbi.2009.12.002
  • Thomas BR, Rodriquez R (1994) Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiol 106:1235–1239. doi:10.1104/pp.106.4.1235
  • To JPC, Reiter WD, Gibson SI (2002) Mobilization of seed storage lipid by Arabidopsis seedlings is retarded in the presence of exogenous sugars. BMC Plant Biol 2:4. doi:10.1186/1471-2229-2-4
  • Yu SM (1999) Cellular and genetic responses of plants to sugar starvation. Plant Physiol 121:687–693. doi:10.1104/pp.121.3.687
  • Zhou S, Zhang D, Luan H, Yu F, Xin X, Hu G (2006) Primary study on protein and lipid accumulation in high oil content soybean varieties. Chin J Oil Crop Sci 28:214–216

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a5329a36-17d0-41ba-b194-122efda28491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.