PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 29 |

Tytuł artykułu

Optymalizacja systemu selekcji genotypów pszenicy zwyczajnej z translokacją 'pontin'

Treść / Zawartość

Warianty tytułu

EN
Optimization of selection system of common wheat genotypes with 'pontin' translocation

Języki publikacji

PL

Abstrakty

EN
The ‘pontin’ translocation was obtained as a result of the recombination of segment from Thinopyrum ponticum with Lr19 gene, carrying resistance to leaf rust caused by Puccinia triticina, with chromosome segment of Thinopyrum intermedium, that contains Bdv2 gene that determines tolerance to Barley Yellow Dwarf Virus. Translocation ‘pontin’ is attractive for improvement of modern cultivars of common wheat (Triticum aestivum L.). The aim of the study was optimization of the set of molecular markers for selection of Polish breeding lines carrying ‘pontin’ translocation. We found that testing with AG15 and SCS265/253 markers is sufficient for tracing of the presence of ‘pontin’ translocation introduced from lines ER6, ER20, ER21, ER35 and IK33. As a result of the screening of over 1200 genotypes in 5 loci, lines carrying ‘pontin’ translocation were identified in materials from Choryn and Strzelce. The optimized system of selection is significant for cumulating resistance genes in selected genotypes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

29

Opis fizyczny

s.123-131,tab.,bibliogr.

Twórcy

autor
  • Katedra Biochemii i Biotechnologii, Politechnika Rzeszowska im.Ignacego Łukasiewicza w Rzeszowie
autor
  • Katedra Biochemii i Biotechnologii, Politechnika Rzeszowska im.Ignacego Łukasiewicza w Rzeszowie
autor
  • Katedra Biochemii i Biotechnologii, Politechnika Rzeszowska im.Ignacego Łukasiewicza w Rzeszowie

Bibliografia

  • Ayala L., Henry M., González-de-León D., van Ginkel M., Mujeeb-Kazi A., Keller B., Khairallah M. 2001. A diagnostic molecular marker allowing the study of Th. intermedium-derived resistance to BYDV in bread wheat segregating populations. Theor. Appl. Genet. 102, 942–949.
  • Ayala-Navarrete L., Bariana H.S., Singh R.P., Gibson J.M., Mechanicos A.A., Larkin P.J. 2007. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th. ponticum translocations in wheat. Theor. Appl. Genet. 116, 63–75.
  • Ayala-Navarrete L.I., Mechanicos A.A., Gibson J.M., Singh D., Bariana H.S., Fletcher J., Shorter S., Larkin P.J. 2013. The Pontin series of recombinant alien translocations in bread wheat: single translocations integrating combinations of Bdv2, Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theor. Appl. Genet. 126, 2467–75.
  • Bournival B., Obanni M., Abad A., Ohm H., Mackenzie S. 1994. Isolation of a new species-specific repetitive sequence from Thinopyrum elongatum and its use in the studies of alien translocations. Genome 37, 97–104.
  • FAOSTAT. 2012. http://faostat3.fao.org/faostat-gateway/go/to/home/E, dostep z dnia 4.11.2013.
  • Gao L., Ma Q., Liu Y., Xin Z., Zhang Z. 2009. Molecular characterization of the genomic region harboring the BYDV-resistance gene Bdv2 in wheat. J. Appl. Genet. 50, 89–98.
  • Gennaro A., Koebner R.M.D., Ceoloni C. 2009. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct. Integr. Genomics 9, 325–334.
  • Gupta S.K., Charpe A., Prabhu K.V., Rizwanul Haque Q. 2006. Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor. Appl. Genet. 113, 1027–1036.
  • Hohmann U., Badaeva K., Busch W., Friebe B., Gill B.S. 1996. Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39, 336–347.
  • Knott D.R. 1968. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can. J. Genet. Cytol. 10, 695–696.
  • Kong L., Anderson J.M., Ohm H.W. 2009. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker. Plant Breed. 128, 591–597.
  • Li X., Yang W., Li Y., Liu D., Yan H., Meng Q., Zhang T. 2006. A SSR Marker for Leaf Rust Resistance Gene Lr19 in Wheat. Agric. Sci. China 5, 111–115.
  • Liu S., Yu L.-X., Singh R.P., Jin Y., Sorrells M.E., Anderson J.A. 2010. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor. Appl. Genet. 120, 691–697.
  • Marais G.F., Marais A.S., Groenewald J.Z. 2001. Evaluation and reduction of Lr19-149, a recombined form of the Lr19 translocation of wheat. Euphytica 121, 289–295.
  • Monneveux P., Reynolds M.P., Gonzalez Aguilar J., Singh R.P. 2003. Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breed. 122, 379–384.
  • Okon S., Matysik P., Nita Z., Bichonski A., Rubrycki K., Wozna-Pawlak U., Kowalczyk K. 2012. Identyfikacja genu Lr19 odpornosci na rdze brunatna w polskich liniach pszenicy zwyczajnej (Triticum aestivum L.). Ann. UMCS, Sec. E. 67, 39–43.
  • Prabhu K.V., Gupta S.K., Charpe A., Koul S. 2004. SCAR marker tagged to the alien leaf rust resistance gene Lr19 uniquely marking the Agropyron elongatum-derived gene Lr24 in wheat: a revision. Plant Breed. 123, 417–420.
  • Prins R., Groenewald J.Z., Marais G.F., Snape J.W., Koebner R.M.D. 2001. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor. Appl. Genet. 103, 618–624.
  • Prins R., Marais G.F., Janse B.J.H., Pretorius Z.A., Marais A.S. 1996. A physical map of the Thinopyrum-derived Lr19 translocation. Genome 39, 1013–1019.
  • Sharma D., Knott D.R. 1966. The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol. 8,137–143.
  • Singh R., Datta D., Priyamvada, Singh S., Tiwari R. 2004. Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.). J. Appl. Genet. 45, 399–403.
  • Singh R.P., Huerta-Espino J., Rajaram S., Crossa J. 1998. Agronomic effects from chromosome translocations 7DL.7Ag and 1BL.1RS in spring wheat. Crop Sci. 38, 27–33.
  • Tyrka M., Chełkowski J. 2004. Enhancing the resistance of triticale by using genes from wheat and rye. J. Appl. Genet. 45, 283–95.
  • Wang RR-C., Wei J-Z. 1995. Variations of two repetitive DNA sequences in several Triticeae genomes revealed by polymerase chain reaction and sequencing. Genome 38, 1221–1229.
  • Winzeler M., Winzeler H., Keller B. 1995. Endopeptidase polymorphism and linkage of the Ep-D1c null allele with the Lr19 leaf rust resistance gene in hexaploid wheat. Plant Breed., 114, 24–28.
  • Zhang W., Dubcovsky J. 2008. Association between allelic variation at the Phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor. Appl. Genet. 116, 635–645.
  • Zhang W., Lukaszewski A.J., Kolmer J., Soria M.A., Goyal S., Dubcovsky J. 2005. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor. Appl. Genet. 111, 573–582.
  • Zhang Z., Lin Z., Xin Z. 2009. Research progress in BYDV resistance genes derived from wheat and its wild relatives. J. Genet. Genomics 36, 567–573.
  • Zhang Z., Xu J., Xu Q., Larkin P., XinNZ. 2004. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theor. Appl. Genet. 109, 433–439.

Uwagi

PL
Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a507b535-6a6a-4466-989a-b84511e0ab0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.