Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 63 | 2 |

Tytuł artykułu

Decomposition of fine woody debris from main tree species in lowland oak forests

Warianty tytułu

Języki publikacji



Decomposition is an important carbon flux that must be accounted for in estimates of forest ecosystem carbon balance. Aim of this research is to provide estimate of fine woody debris decomposition rates for different tree species and sample sizes also taking into account the influence of specific microsite meteorological conditions on decomposition rates. In this paper we present results of the first two years of the experiment designed to last six years. Study was conducted in managed lowland oak forest in central Croatia. Decomposition rates (k) of fine woody debris (diameter 0.5–7 cm) for four species (Querus robur L., Carpinut betulus L., Alnus glutinosa Gaernt., Fraxinus angustifolia L.) in four size classes were estimated using litter bag method and mass loss equation of Olson (1963). Overall average k in our study was 0.182 ± 0.011 year-1. Results indicate that decomposition rate is affected by the size of the debris, with the smallest diameter branches (<1 cm) decomposing is significantly faster (k = 0.260 ± 0.018, P <0.05) than the larger one. Tree species from which debris had originated also affected decomposition, although to a lesser extent, with hornbeam samples having significantly (P <0.05) higher average decomposition rate (0.229 ± 0.028), compared to that of ash samples (0.141 ± 0.022). Proportion of variability in k explained by variables ‘species’ and ‘size class’ was assessed with general linear model (R² = 0.644) also taking into account variables like soil temperature and soil water content. Sample size class explained 22.2%; species explained only 9.4%, while soil water content and temperature combined explained 32.8% of the variance of k. Rate constants obtained within this study might be useful in modelling ecosystem carbon balance for similar lowland forest ecosystems in Europe.








Opis fizyczny



  • Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia
  • Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia
  • Croatian Forest Research Institute, Cvjetno naselje 41, HR-10450 Jastrebarsko, Croatia
  • Faculty of Forestry University of Zagreb, Svetosimunska 25, HR-10000 Zagreb, Croatia
  • Faculty of Forestry University of Zagreb, Svetosimunska 25, HR-10000 Zagreb, Croatia


  • R. Benić 1966 — [Forest technical manual] — Znanje, Zagreb, 568 pp. (in Croatian).
  • M.R. Berbeco, J.M. Melillo, C.M. Orians 2012 — Soil warming accelerates decomposition of fine woody debris — Plant Soil, 356: 405–417.
  • B. Bond-Lamberty, C.K. Wang, S.T. Gower 2003 — Annual carbon flux from woody debris for a boreal black spruce fire chronosequence — J. Geophys. Res. 107(D23):WFX 1-1-WFX 1–10.
  • A. Castro, D.H. Wise 2010 — Influence of fallen coarse woody debris on the diversity and community structure of forest-floor spiders (Arachnida: Araneae) — Forest Ecol. Manag. 206: 2088–2101.
  • J.Q. Chambers, N. Higuchi, J.P. Schimel, L.V. Ferreira, J.M. Melack 2000 — Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon — Oecologia, 122: 380–388.
  • J. Chave, D.A. Coomes, S. Jansen, S.L. Lewis, N.G. Swenson, A.E. Zanne 2009 — Towards a worldwide wood economics spectrum — Ecol. Lett. 12: 351–366.
  • M. Ćirić 1984 — [Soil Science] — Svjetlost, Sarajevo, 312 pp. (in Croatian).
  • J.M. Eaton 2005 — Woody debris and the carbon budget of secondary forests in the southern Yucatan peninsular region — M.Sc. thesis, Department of Environmental Sciences, University of Virginia, 76 pp.
  • J.M. Eaton, D. Lawrence 2006 — Woody debris stocks and fluxes during succession in a dry tropical forest — Forest Ecol. Manag. 232: 46–55.
  • R.L. Edmonds 1980 — Litter decomposition and nutrient release in Douglas-fir, red alder, western hemlock, and Pacific silver fir ecosystems in western Washington — Can. J. Forest Res. 10: 327–337.
  • R.L. Edmonds 1987 — Decomposition rates and nutrient dynamics in small-diameter woody litter in four forest ecosystems in Washington — Can. J. Forest Res. 17: 499–509.
  • B.G. Fasth, M.E. Harmon, J. Sexton, P. White 2011 — Decomposition of fine woody debris in a deciduous forest in North Carolina — J. Torrey Bot. Soc. 138: 192–206.
  • J.L. Frangi, L.L. Richter, M.D. Barrera, M. Aloggia 1997 — Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina — Can. J. Forest Res. 27: 1095–1102.
  • C.M. Gough, C.S. Vogel, C. Kazanski, L. Nagel, C.E. Flower, P.S. Curtis 2007 — Coarse woody debris and the carbon balance of a north temperate forest — Forest Ecol. Manag. 244: 60–67.
  • M.E. Harmon, G.A. Baher, G. Spycher, S.E. Greene 1990 — Leaf-litter decomposition in the Picea/Tsuga forests of Olympic National Park, Washington, U.S.A. — Forest Ecol. Manag. 31: 55–66.
  • M.E. Harmon, J.F. Franklin, F.J. Swanson, P. Sollins, S.V. Gregory, J.D. Lattin, N.H. Anderson, S.P. Cline, N.G. Aumen, J.R. Sedell, G.W. Lienkaemper, J.R.K. Cromack, K.W. Cummins 1986 — Ecology of coarse woody debris in temperate ecosystems — Adv. Ecol. Res. 15: 133–302.
  • M.E. Harmon, D.F. Whigham, J. Sexton, I. Olmsted 1995 — Decomposition and mass of woody detritus in the dry tropical forests of northeastern Yucatan Peninsula, Mexico — Biotropica, 27: 305–316.
  • T.W. Idol, R.A. Figler, P.E. Pope, J.R.F. Ponder 2001 — Characterization of coarse woody debris across a 100 year chronosequence of upland oak-hickory forests — Forest Ecol. Manag. 149: 153–161.
  • IPCC 2003 — Good practice guidance for land use, land-use change and forestry (In: Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change IPCC/IGES, Eds: J. Penman, M. Gytarsky, T. Hiraishi, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, F. Wagner) — Hayama, Japan, pp. 3.1–3.68, 3.301–3.304.
  • IPCC 2006 — 2006 IPCC Guidelines for National Greenhouse Gas Inventories — Agriculture, Forestry and Other Land Use (In: Institute for Global Environmental Strategies for the Intergovernmental Panel on Climate Change IPCC/IGES, Eds: H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara and K. Tanabe K) — Japan, pp. 4.71.
  • J.D. Knoepp, B.C. Reynolds, D.A. Crossley, W.T. Swank 2005 — Long-term changes in forest floor processes in southern Appalachian forests — Forest Ecol. Manag. 220: 300–312.
  • T.T. Kozlowski, S.G. Pallardy 1997 — Physiology of woody plants — Academic Press, San Diego, 411 pp.
  • J.J. Landsberg, S.T. Gower 1997 — Soil organic matter and decomposition (In: Applications of physiological ecology to forest management, Ed: H.A. Mooney) — Academic Press, San Diego, pp. 161–184.
  • W. Liu, D. Schaefer, L. Qiao, X. Liu 2013 — What controls the variability of wood-decay rates? — Forest Ecol. Manag. 310: 623–631.
  • Y. Luo, X. Zhou 2006 — Soil respiration and environment — Academic Press, San Diego, 319 pp.
  • J. Mackensen, J. Bauhus, E. Webber 2003 — Decomposition rates of coarse woody debris - A review with particular emphasis on Australian tree species — Aust. J. Bot. 51: 27–37.
  • H. Marjanović, M.Z. Ostrogović, G. Alberti, I. Balenović, E. Paladinić, K. Indir, A. Peressotti, D. Vuletić 2011 — [Carbon dynamics in younger stands of Pedunculate oak during two vegetation periods] — Šumarski list 135 (special issue), pp. 59–73 (in Croatian, English summary).
  • B. Mayer 1996 — [Hydropedological relations in the region of lowland forests of the Pokupsko basin] (In: [Lowland forests of the Pokupsko basin], Ed: B. Mayer) — Radovi Šumarskog instituta, Jastrebarsko, pp. 37–89 (in Croatian).
  • S. Muller-Using, N. Bartsch 2009 — Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany — Eur. J. For. Res. 128: 287–296.
  • M. Nijnik, B. Slee, G. Pajot 2010 — Opportunities and challenges for terrestrial carbon offsetting and marketing, with some implications for forestry in the UK — South-East Eur. For. 1: 69–79. DOI:
  • B. Nordén, M. Ryberg, F. Götmark, B. Olausson 2004 — Relative importance of coarse and fine woody debris for the diversity of woodinhabiting fungi in temperate broadleaf forests — Biol. Conserv. 117: 1–10.
  • A.M. O'Connell 1997 — Decomposition of slash residues in thinned regrowth eucalypt forest in western Australia — J. Appl. Ecol. 34: 111–122.
  • J.S. Olson 1963 — Energy storage and the balance of producers and decomposers in ecological systems — Ecology, 44: 322–331.
  • M.Z. Ostrogović 2013 — [Carbon stocks and carbon balance of an even-aged Pedunculate Oak (Quercus robur L.) forest in Kupa river basin] — Ph.D. thesis, Croatian Forest Research Institute, 130 pp. (in Croatian, English summary).
  • M.E. Pérez-Corona, M.C.P. Hernández, F. Bermúdez de Castro 2006 — Decomposition of alder, ash, and poplar litter in a Mediterranean riverine area — Commun. Soil Sci. Plan. 37: 1111–1125.
  • D. Perruchoud, F. Joos, A. Fischlin, I. Hajdas, G. Bonani 1999 — Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data — Global Biogeochem. Cy. 13: 555–573.
  • R.C. Pettersen 1984 — The chemical composition of wood (In: The chemistry of solid wood, Ed: R. Rowell) — Am. Chem. S., USA, pp. 57–126.
  • SAS Institute Inc. 2011 — SAS 9.3 Software.
  • E.D. Schulze, E. Beck, K. Müller-Hohenstein 2005 — Plant ecology — Springer, Berlin/Heidelberg, 702 pp.
  • F.W.M.R. Schwarze 2007 — Wood decay under the microscope — Fungal Biol. Rev. 21: 133–170.
  • S. Sitch, B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J.O. Kaplan, S. Levis, W. Lucht, M.T. Sykes, K. Thonicke, S. Venevsky 2003 — Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model — Glob. Change Biol. 9: 161–185.
  • StatSoft, Inc. 2012 — STATISTICA (data analysis software system), version 11.
  • I. Stupak, A. Asikainen, M. Jonsell, E. Karltun, A. Lunnan, D. Mizaraité, K. Pasanen, H. Pärn, K. Raulund-Rasmussen, D. Röser, M. Schroeder, I. Varnagiryté, L. Vilkriste, I. Callesen, N. Clarke, T. Gaitnieks, M. Ingerslev, M. Mandre, R. Ozolincius, A. Saarsalmi, K. Armolaitis, H.-S. Helmisaari, A. Indriksons, L. Kairiukstis, K. Katzensteiner, M. Kukkola, K. Ots, H.P. Ravn, P. Tamminen 2007 — Sustainable utilisation of forest biomass for energy — Possibilities and problems: Policy, legislation, certification, and recommendations and guidelines in the Nordic, Baltic, and other European countries — Biomass Bioenerg. 31: 666–684.
  • P.E. Thornton 2000 — User's guide for Biome-BGC, version 4.1.1 — Numerical terradynamic simulation group, School of Forestry, University of Montana, Missoula, 22 pp.
  • P. Vavřová, T. Penttilä, R. Laiho 2009 — Decomposition of scots pine fine woody debris in boreal conditions: Implications for estimating carbon pools and fluxes — Forest Ecol. Manag. 257: 401–412.
  • J.T. Weedon, W.K. Cornwell, J.H.C. Cornelissen, A.E. Zanne, C. Wirth, D.A. Coomes 2009 — Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? — Ecol. Lett. 12: 45–56.
  • C.W. Woodall, G.C. Liknes 2008 — Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States — Carbon Balance Manag. 3: 5.
  • Z. Wu, P. Dijkstra, GW. Koch, J. Peñuelas, B.A. Hungate 2011 — Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation — Glob. Change Biol. 17:927–942. doi: 10.1111/j.1365-2486.2010.02302.x
  • A.E. Zanne, G. Lopez-Gonzalez, D.A. Coomes, J. Ilic, S. Jansen, S.L. Lewis, R.B. Miller, N.G. Swenson, M.C. Wiemann, J. Chave 2009 — Data from: Towards a worldwide wood economics spectrum — Dryad Digital Repository (Global wood density database).
  • G. Zhou, L. Guan, X. Wei, X. Tang, S. Liu, J. Liu, D. Zhang, J. Yan 2008 — Factors influencing leaf litter decomposition: An intersite decomposition experiment across China — Plant Soil 311: 61–72.

Typ dokumentu


Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.