PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2014 | 49 | 1 |

Tytuł artykułu

Relationships between nest-cavity and mate selection, reproductive performance and fidelity in the Mediterranean endemic Yelkouan Shearwater Puffinus yelkouan

Warianty tytułu

PL
Zależności między wyborem oraz przywiązaniem do miejsca gniazdowania i partnera a sukcesem lęgowym u burzyka śródziemnomorskiego

Języki publikacji

EN

Abstrakty

EN
Nest and mate choice is important in seabirds, influencing reproductive performance as both nest-site and partner quality varies. The Yelkouan Shearwater Puffinus yelkouan nests mainly in pre-existing cavities and to a lesser extent in cavities it excavates. We have monitored breeding colonies of the Yelkouan Shearwater on two islands of the Hyères archipelago, south-east of France, for nine years to analyse nest-cavity and mate selection, to evaluate nest-cavity and mate fidelity, and to investígate their relationships with reproductive performance. Yelkouan Shearwaters selected nest-cavities providing a high degree of concealment and protection. Reproductive performance and fidelity to cavity were highest in deep cavities with a winding tunnel and a steep slope around the entrance. Mating was assortative for bill and tarsus measurements. High rates of return to the same cavity (94.7%) and mate (95.5%) were recorded. Fidelity to nest-cavity was highest when breeding succeeded the previous year (fidelity rate: 97.3% in successful breeders vs. 87.8% in unsuccessful breeders) and was most likely to result in successful breeding the same year (breeding success: 67.5% in faithful breeders vs. 43.8% in movers). The rate of divorce was low (4.5%), did not differ between islands and was not associated with breeding performance. However, breeding success increased by 22.2 ± 9.9% after mate change following a divorce or the absence of a previous mate. Such high rates of nest-cavity and mate fidelity could indicate a good population status with breeding habitat, food resource and mates of good quality.
PL
Jakość miejsca na gniazdo, jak i partnera może wpływać na osiągany sukces rozrodczy. Przez dziewięć sezonów badano kolonie lęgowe burzyka śródziemnomorskiego, gatunku gniazdującego głównie w istniejących szczelinach skalnych i wykopanych przez siebie norach, na dwóch wyspach w archipelagu Hyères, na południowo-wschodnim wybrzeżu Francji. Określano wybór i przywiązanie do partnera oraz miejsca gniazdowania, a następnie analizowano te parametry w odniesieniu do osiąganego sukcesu lęgowego. Stwierdzono, że badane wyspy różniły się dynamiką miejsc gniazdowych — tempem powstawania nowych oraz zanikania istniejących, wykorzystywanych przez ptaki (Fig. 1). Burzyki najchętniej wybierały miejsca lęgowe głębokie, z krętym tunelem, z niską roślinnością wokół otworu wejściowego i na niewielkiej wysokości (Tab. 1). Proporcja lęgów zakończonych sukcesem w stosunku do liczby wszystkich lęgów w danym miejscu gniazdowym korelowała dodatnio z głębokością miejsca gniazdowego, nachyleniem stoku z gniazdem i obecnością krętego tunelu. Do miejsc o takiej charakterystyce burzyki powracały w kolejnych sezonach najczęściej (Tab. 1), a w poszczególnych latach badań nawet do 100% ptaków wracało do zeszłorocznych miejsc rozrodu (Tab. 2). Przywiązanie do miejsca lęgowego stwierdzano szczególnie często (97,3%) w przypadku, gdy w poprzednim sezonie lęg zakończył się sukcesem. Lęgi w takich miejscach częściej także kończyły się sukcesem w kolejnym sezonie — 67,5% lęgów zakończonych sukcesem w porównaniu do 43,8% lęgów z sukcesem w miejscach gniazdowych zmienionych po poprzednim sezonie. Dobór partnera nie był losowy — pozytywnie w obrębie par skorelowane były wartości związane z pomiarami dzioba i skoku (Tab. 3, Fig. 2). Stwierdzono silne przywiązanie do partnera (95,5%), podobne we wszystkich badanych sezonach (Tab. 4). Tak duże przywiązanie do miejsca gniazdowego i partnera wskazuje na dobry stan populacji, na który składają się obecność ptaków dobrej kondycji, odpowiednia baza pokarmowa i wysoka jakość miejsc lęgowych.

Wydawca

-

Czasopismo

Rocznik

Tom

49

Numer

1

Opis fizyczny

p.9-22,fig.,ref.

Twórcy

autor
  • School of Biological Sciences, Auckland University, Private Bag 92019, Auckland 1142, New Zealand
  • Institut Mediterraneen de Biodiversite et d’Ecologie marine et continentale (IMBE), Aix-Marseille Universite, UMR CNRS IRD UAPV, Europole Mediterraneen de l'Arbois, Avenue Philibert, BP 80, 13545 Aix en Provence cedex 04, France
  • A dos d’lles, Association for the study and conservation of insular biodiversity, 101 Val de Sibourg, 13680 Lancon de Provence, France
autor
  • A dos d’lles, Association for the study and conservation of insular biodiversity, 101 Val de Sibourg, 13680 Lancon de Provence, France
autor
  • Institut Mediterraneen de Biodiversite et d’Ecologie marine et continentale (IMBE), Aix-Marseille Universite, UMR CNRS IRD UAPV, Centre IRD de Noumea, BPA5, 98848 Noumea cedex, New Caledonia

Bibliografia

  • Ashmole N. P. 1968. Body size, prey size and ecological segregation in five sympatric tropical terns (Aves: Laridae). Syst. Zool. 17: 292-304.
  • Barbraud C., Jouventin P. 1998. What causes body size variation in the Snow Petrel Pagodroma nivea? J. Avian Biol. 29: 161-171.
  • Black J. M. 1996. Introduction: pairbonds and partnerships. In: Black J. M. (ed.). Partnerships in birds. The study of monogamy. Oxford Univ. Press, Oxford, pp. 3-20.
  • Bonnaud E., Zarzoso-Lacoste D., Bourgeois K., Ruffino L., Legrand J., Vidal E. 2010. Top-predator control on islands boosts endemic prey but not mesopredator. Anim. Conserv. 13: 556-567.
  • Bourgeois K., Curé C., Legrand J., Gómez-Díaz E., Vidal E., Aubin T., Mathevon N. 2007. Morphological versus acoustic analysis: what is the most efficient method for sex- ing Yelkouan Shearwaters Puffinus yelkouan? J. Ornithol. 148: 261-269.
  • Bourgeois K., Dromzée S., Vidal E., Legrand J. 2008b. Yelkouan Shearwater Puffinus yelkouan presence and behaviour at colonies: not only a moonlight question. C. R. Biol. 331: 88-97.
  • Bourgeois K., Vidal E. 2007. Yelkouan Shearwater nest-cavity selection and breeding success. C. R. Biol. 330: 205-214.
  • Bourgeois K., Vidal E. 2008. The endemic Mediterranean Yelkouan Shearwater Puffinus yelkouan: distribution, threats and a plea for more data. Oryx 42: 187-194.
  • Bourgeois K., Vidal E., Comor V., Legrand J., Dromzée S. 2008a. Colony-site selection drives management priorities for Yelkouan Shearwater populations. J. Wildlife Manage. 72: 1188-1193.
  • Bradley J. S., Wooller R. D., Skira I. J., Serventy D. L. 1990. The influence of mate retention and divorce upon reproductive success in Short-tailed Shearwaters Puffinus tenuirostris. J. Anim. Ecol. 59: 487-496.
  • Bried J., Jouventin P. 1999. Influence of breeding success on fidelity in long-lived birds: an experimental study. J. Avian Biol. 30: 392-398.
  • Bried J., Jouventin P. 2002. Site and mate choice in seabirds: an evolutionary approach. In: Schreiber E. A., Burger J. (eds). Biology of marine birds. CRC Press, New York, pp. 263-305.
  • Bried J., Pontier D., Jouventin P. 2003. Mate fidelity in monogamous birds: re-examination of the Procellariiformes. Anim. Behav. 65: 235-246.
  • Brooke M. 1990. The Manx Shearwater. Academic Press, London.
  • Brooke M. 2004. Albatrosses and petrels across the world. Oxford Univ. Press, New York.
  • Brown R. G. B., Bourne W. R. P., Wahl T. R. 1978. Diving by shearwaters. Condor 80: 123-125.
  • Bull L. S., Bell B. D., Pledger S. 2005. Patterns of size variation in the shearwater genus Puffinus. Mar. Ornithol. 33: 27-39.
  • Bull L. S., Haywood J., Pledger S. 2004. Components of phenotypic variation in the morphometries of shearwater (Puffinus) species. Ibis 146: 38-45.
  • Cachia Zammit R., Borg J. 1986-1987. Notes on the breeding biology of the Cory's Shearwater in the Maltese islands. Il- Merill 24: 1-9.
  • Carey M. J. 2011. Sexual size dimorphism, within-pair comparisons and assortative mating in the Short-tailed Shearwater (Puffinus tenuirostris). Notornis 58: 8-16.
  • Cézilly F., Dubois F., Pagel M. 2000. Is mate fidelity related to site fidelity? A comparative analysis in Ciconiiforms. Anim. Behav. 59: 1143-1152.
  • Choudhury S. 1995. Divorce in birds: a review of the hypotheses. Anim. Behav. 50: 413-429.
  • Cody M. L. 1985. An introduction to habitat selection. In: Cody M. L. (ed.). Habitat selection in birds. Academic Press, San Diego, pp. 3-56.
  • Coulson J. C. 1972. The significance of the pair-bond in the Kittiwake. Proc. Int. Ornithol. Congr. 25: 424-433.
  • Cox R. D. 1972. Regression models and life-tables. J. Roy. Stat. Soc. 2: 187-202.
  • Cuthbert F. J. 1985. Mate retention in Caspian Terns. Condor 87: 74-78.
  • Dubois F., Cézilly F., Pagel M. 1998. Mate fidelity and coloniality in waterbirds: a comparative analysis. Oecologia 116: 433-440.
  • Edworthy A. B., Martin K. 2013. Persistence of tree cavities used by cavity-nesting vertebrates declines in harvested forests. J. Wildlife Manage. 77: 770-776.
  • Edworthy A. B., Wiebe K. L., Martin K. 2012. Survival analysis of a critical resource for cavity-nesting communities: patterns of tree cavity longevity. Ecol. Appl. 22: 1733-1742.
  • Einoder L. D., Page B., Goldsworthy S. D. 2008. Sexual dimorphism and assortative mating in the Short- tailed Shearwater Puffinus tenuirostris. Mar. Ornithol. 36: 167-173.
  • Ens B. J., Safriel U. N., Harris M. P. 1993. Divorce in the long- lived and monogamous Oystercatcher, Haematopus ostralegus: incompatibility or choosing the better option? Anim. Behav. 45: 1199-1217.
  • Forero M. G., Tella J. L., Donázar J. A., Blanco G., Bertellotti M., Ceballos O. 2001. Phenotypic assortative mating and within-pair sexual dimorphism and its influence on breeding success and offspring quality in Magellanic Penguins. Can. J. Zool. 79: 1414-1422.
  • Fox G. A. 2001. Failure time analysis: studying times-to-events and rates at which events occur. In: Scheiner S., Gurevitch J. (eds). Design and analysis of ecological experiments. Oxford University Press, New York, pp. 253-289.
  • Fretwell S. D., Lucas H. L. 1970. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheor. 14:16-36.
  • Gaston A. J. 2004. Seabirds: a natural history. T & AD Poyser, London.
  • González-Solís J. 2004. Sexual size dimorphism in Northern Giant Petrels: ecological correlates and scaling. Oikos 105: 247-254.
  • Greenwood P. J., Harvey P. H. 1982. The natal and breeding dispersal of birds. Annu. Rev. Ecol. Syst. 13: 1-21.
  • Hervías S., Henriques A., Oliveira N., Pipa T., Cowen H., Ramos J. A., Nogales M., Geraldes P., Silva C., Ruiz de Ybáńez, Oppel S. 2013. Studying the effects of multiple invasive mammals on Cory's Shearwater nest survival. Biol. Invasions 15: 143-155.
  • Holmes R. T., Pitelka F. A. 1968. Food overlap among coexisting sandpipers on Northern Alaska tundra. Syst. Zool. 17: 305-318.
  • Hunt G. L. 1980. Mate selection and mating systems in seabirds. In: Burger J., Olla B. L., Winn H. E. (eds). Behavior of marine animals. Vol. IV. Plenum, New York, pp. 113-151.
  • IUCN 2012. IUCN Red list of threatened species, Version 2012.1. http://www.iucnredlist.org, accessed June 2012.
  • Jones H. P., Tershy B. R., Zavaleta E. S., Croll D. A., Keitt B. S., Finkelstein M. E., Howald G. R. 2006. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22: 16-26.
  • Kaplan E. L., Meier P. 1958. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53: 457-481.
  • Koffijberg K., Van Eerden M. R. 1995. Sexual dimorphism in the Cormorant Phalacrocorax carbo sinensis: possible implications for differences in structural size. Ardea 83: 37-46.
  • Kuroda N. 1958. On the classification and phylogeny of the order tubinares, particularly the shearwaters (Puffinus), with special considerations on their osteology and habit differentiation (Aves). Published by the author, Tokyo.
  • Lack D. 1968. Ecological adaptations for breeding in birds. Muthuen, London.
  • McNamara J. M., Forslund P. 1996. Divorce rates in birds: prediction from an optimization model. Am. Nat. 147: 609-640.
  • Moody A. T., Wilhelm S. I., Cameron-McMillan M. L., Walsh C. J., Storey A. E. 2005. Divorce in Common Murres (Uria aalge): relationship to parental quality. Behav. Ecol. Sociobiol. 57: 224-230.
  • Morse D. H., Kress S. W. 1984. The effect of burrow loss on mate choice in the Leach's Storm-Petrel. Auk 101: 158-160.
  • Mougin J. L. 1990. La fidélité au partenaire et au nid chez le Pétrel de Bulwer Bulweria bulwerii de l'íle Selvagem Grande. Oiseau Rev. Fr. Ornithol. 60: 224-232.
  • Mougin J. L., Jouanin C., Roux F. 2000. Mate fidelity in Cory's Shearwater Calonectris diomedea on Selvagem Grande. Ibis 142: 421-427.
  • Mougin J. L., Jouanin C., Roux F. 2002. Inexperienced birds and breeding in the Cory's Shearwater (Calonectris diomedea). J. Ornithol. 143: 57-63.
  • Newton I. 1989. Life-time reproductive success in birds. Academic Press, London.
  • Oppel S., Raine A. F., Borg J. J., Raine H., Bonnaud E., Bourgeois K., Breton A. R. 2011. Is the Yelkouan Shearwater Puffinus yelkouan threatened by low adult survival probabilities? Biol. Conserv. 144: 2255-2263.
  • Orians G. H. 1969. On the evolution of mating systems in birds and mammals. Am. Nat. 103: 589-603.
  • Pledger S., Bullen L. 1998. Tests for mate and nest fidelity in birds with application to Little Blue Penguins (Eudyptula minor). Biometrics 54: 61-66.
  • Richdale L. E. 1964. Biology of the Sooty Shearwater Puffinus griseus. Proc. Zool. Soc. Lond. 141: 1-117.
  • Ricklefs R. E. 1969. An analysis of nesting mortality in birds. Smithson. Contrib. Zool. 9: 1-48.
  • Rogers T., Knight C. 2006. Burrow and mate fidelity in the Little Penguin Eudyptula minor at Lion Island, New South Wales, Australia. Ibis 148: 801-806.
  • Rowley I. 1983. Re-mating in birds. In: Bateson P. (ed.). Mate choice. Cambridge Univ. Press, Cambridge, pp. 331-360.
  • Ruffino L., Bourgeois K., Vidal E., Icard J., Torre F., Legrand J. 2008. Introduced predators and cavity-nesting seabirds: unexpected low level of interaction at breeding sites. Can. J. Zool. 86: 1068-1073.
  • Ryder J. P. 1980. The influence of age on the breeding biology of colonial nesting seabirds. In: Burger J., Olla B. L., Winn H. E. (eds). Behavior of marine animals. Vol. 4 — Marine Birds. Plenum, New York, pp. 153-168.
  • Sokal R. R., Rohlf F. J. (eds). 1995. Biometry. 3rd ed. Freeman and Company, New York.
  • Serrano-Meneses M. A., Székely T. 2006. Sexual size dimorphism in seabirds: sexual selection, fecundity selection and differential niche-utilisation. Oikos 113: 385-394.
  • Swatschek I., Ristow D., Wink M. 1994. Mate fidelity and parentage in Cory's Shearwater Calonectris diomeadea — field studies and DNA fingerprinting. Mol. Ecol. 3: 259-262.
  • Switzer P. V. 1993. Site fidelity in predictable and unpredictable habitats. Evol. Ecol. 7: 533-555.
  • Thibault J. C. 1994. Nest-site tenacity and mate fidelity in relation to breeding success in Cory's Shearwater Calonectris diomeadea. Bird Study 41: 25-28.
  • Wagner R. H. 1999. Sexual size dimorphism and assortative mating in Razorbills (Alca torda). Auk 116: 542-544.
  • Warham J. 1990. The petrels: their ecology and breeding systems. Academic Press, London.
  • Weimerskirch H. 2002. Seabird demography and its relationship with the marine environment. In: Schreiber E. A., Burger J. (eds). Biology of marine birds. CRC Press, New York, pp. 115-135.
  • Wesołowski T. 2012. "Lifespan" of non-excavated holes in a primeval temperate forest: a 30 year study. Biol. Conserv. 153: 118-126.
  • Whittingham M. J., Stephens P. A., Bradbury Y., Richard B., Freckleton R. P. 2006. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75: 1182-1189.
  • Wittenberger J. F. 1980. The evolution of monogamy: hypotheses and evidence. Ann. Rev. Ecol. Syst. 11: 197-232.
  • Wooller R. D., Bradley J. S., Skira I. J., Serventy D. L. 1990. Reproductive success of Short-tailed Shearwaters Puffinus tenuirostris in relation to their age and breeding experience. J. Anim. Ecol. 59: 161-170.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a4c4af09-1b7c-4bcf-8906-a2b247e8fa89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.