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Summary: The power produced by many renewable energy 
sources, like photovoltaic or wind farms, is highly variable over 
time. In order for the electrical system to be able to receive larger 
share of energy from these sources some kind of energy storage 
is needed. The paper presents properties and simple models of 
PEM fuel cells and PEM electrolysers and evaluation of the 
possibility of using these devices for energy storage in form of 
hydrogen production. 
Key words: smart grid, energy storage, hydrogen production, 
fuel cells, electrolyser. 

INTRODUCTION

The solar radiation is a highly variable source of energy, 
as experienced on the surface of the Earth. There are three 
main causes of this variability. The first one is the yearly trav-
el of our planet around the Sun, which results in differences 
in the duration of the day, as well as the maximum height of 
the Sun above the horizon between summer and winter. The 
second cause is the Earth’s daily rotation around its axis. The 
third source of the radiation intensity variation is of meteor-
ological nature – the cloud presence, the type and thickness 
play the major role in the energy availability on a given day. 

One of the factors which make a wider use of photo-
voltaics difficult is discrepancy between the time when the 
electrical energy is needed and when it can be produced: 
both within a day and year. The problem of energy storage 
as a supplement to a renewable energy source has been 
a subject of numerous researches [1, 4, 17, 24]. Apart from 
conventional ways to store the energy like lead-acid bat-
teries [10] and pumped hydro-storage [15], other methods 
including super-capacitors [23], flow batteries [7], hydro-
gen [29] and renewable power methane [21] production 
are considered. 

Many of the rural areas in Europe have an untapped 
potential for renewable energy sources (RES) [9]. There is 

a relatively high potential for additional income and unem-
ployment reduction in these areas due to the development 
of RES. The anticipated transformation of the conventional 
electrical power network into Smart Grid, among others, 
includes integration of energy storage devices into the grid 
[5]. Therefore, energy storage systems will become one more 
business possibility in the rural areas.

The fuel cells are promising technology in providing 
high quality power in distributed generation systems (includ-
ing photovoltaic generation) [11]. The hydrogen generated 
at times when the generation exceeds power demand can be 
used in the fuel cells to generate the energy when needed. 
This approach will provide a way for better balancing the 
demand with RES. 

FUEL CELLS

Fuel cells are devices which directly convert chemical 
energy contained in a fuel into electrical energy. One of the 
most widely used fuel is gaseous hydrogen. In a typical fuel 
cell the half-reactions can be written as follows [22]: 

	 , 	 (1)

	 .	 (2)

The electrons removed on the anode do the work in an 
external circuit and the proton (the H+ ion) is transferred 
through some kind of electrolyte (depending on the fuel 
cell type). On the cathode the proton meets the electrons 
coming from the circuit and combined with oxygen it forms 
water. One of the largely used type is the Polymer Electrolyte 
Membrane Fuel Cell (PEMFC). Its name comes from the 
construction and material used for the proton – conducting 
electrolyte. There are many review papers which present var-
ious types of fuel cells and their properties like [14, 25, 30].
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Figure 1 presents the typical current-voltage curve of 
a fuel cell with its three main sections illustrated.

Fig. 1. Typical current-voltage curve of a fuel cell: a) activation 
losses dominant region, b) ohmic losses dominant region, c) con-
centration losses dominant region.

The fundamental equation which describes the cell volt-
age Vcell is [13]: 

	

The electrons removed on the anode do the work in an external circuit and the proton 
(the H+ ion) is transferred through some kind of electrolyte (depending on the fuel cell type). 
On the cathode the proton meets the electrons coming from the circuit and combined with 
oxygen it forms water. One of the largely used type is the Polymer Electrolyte Membrane 
Fuel Cell (PEMFC). Its name comes from the construction and material used for the proton – 
conducting electrolyte. There are many review papers which present various types of fuel 
cells and their properties like [14, 25, 30]. 

Figure 1 presents the typical current-voltage curve of a fuel cell with its three main 
sections illustrated. 

 
Fig. 1. Typical current-voltage curve of a fuel cell: a) activation losses dominant 

region, b) ohmic losses dominant region, c) concentration losses dominant region. 
 

The fundamental equation which describes the 
cell voltage Vcell is [13]:  

(3) 
the cell’s reversible (Nernst) potential ENernst can be calculated as [31]: 

     OHrefeNernst PPRT
F

TTSG
F

E ln
2
1

2
1

      (4) 

Where Ge - free Gibb’s energy,S - entropy change, F - Faraday constant, T - 
operating temperature, Tref - reference temperature, PH - hydrogen partial pressure, PO - 
oxygen partial pressure, VAct - activation losses, Vcell - cell operating voltage, VCon - 
concentration losses, VOhm - ohmic losses, R - gas constant. 

In equation (4) the pressures are assumed to be in bars, otherwise each of the pressures 
should be divided by the value of pressure in standard conditions. Assuming standard pressure 
and temperature, the above equation can be transformed into [31]: 
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in which 1…4  are empirical coefficients and I is the cell current. The oxygen 
concentration in the catalytic interface of the cathode CO can be expressed by[26, 31]: 
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Where DGe – free Gibb’s energy, DS – entropy change, 
F – Faraday constant, T – operating temperature, Tref – ref-
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The efficiency of the fuel cells is a variable depending on its operating conditions: 
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electrolysis using the electrical energy from the RES. The advantages include high purity, 
which is important for the fuelling of fuel cells.  
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The efficiency of the fuel cells is a variable depending 
on its operating conditions: temperature, current density 
and rate of fuel delivered and it is reported to be within the 
range of 20 to 75 % [27].

HYDROGEN GENERATION

Hydrogen can be produced in many ways. The most 
popular technology in a large scale production is steam gas-
ification. Its variation is the steam gasification of biomass 
[20]. For the application of the fuel cell system as the en-
ergy storage for renewable sources this technology is not 
appropriate. A better solution is producing hydrogen by the 
water electrolysis using the electrical energy from the RES. 
The advantages include high purity, which is important for 
the fuelling of fuel cells. 

The main technologies used for electrolysis are: solid 
oxide high temperature [19], alkaline [16] and PEM [6] 
electrolysers. As an example a summary of a simple PEM 
electrolyser model will be presented here.

The current – voltage (I-V) curve of the single cell of an 
electrolyser can be modelled by the following equation [2]:

	 ,	 (13)
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The hydrogen flow in litres per second can be expressed 
by [3]:
	 ,	 (14)

where:
 p is the gas pressure and other variables as defined earlier. 
The relationship (14) can be approximated by a linear ex-
pression [2]:

	 ,	 (15)

in which KH is a coefficient (equal to 4,1 ml W-1 A-1 in [2]) 
and P is electrical power delivered to the electrolyser. 

The electrical-to-chemical (hydrogen) energy con-
version efficiency is reported around 50 % [2], whereas 
light-to-chemical efficiency (using photovoltaic generators) 
is approximately 5 % – mainly due to relatively low effi-
ciency of the photovoltaic generator. 

CONCLUSIONS

Assuming the realistic medium values of energy conver-
sion efficiencies (50 % for electrical energy-to-hydrogen for 
an electrolyser and 50 % for hydrogen-to-electrical energy 
for the fuel cells) the overall efficiency in the chain electrical 
energy from photovoltaic generator – hydrogen production 
(storage) – electrical energy from fuel cells will be equal 
to 25 %. This efficiency can be increased by utilising the 
heat produced both within the electrolyser and the fuel cell 
and operating as a combined heat and power (CHP) system.

The anticipated evolution of the electrical grid as known 
today into a smart grid will include, among others, ener-
gy storage systems [18]. The decentralised energy storage 
should be preferably placed in locations which would pre-
vent the need to upgrade the existing electrical grid [28]. 
One of the available options is storing the energy by the 
hydrogen production. 
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OGNIWA PALIWOWE JAKO MAGAZYN 
ENERGII DLA ŹRÓDEŁ FOTOWOLTAICZNYCH 

W OBSZARACH WIEJSKICH

Streszczenie: Moc wytwarzana przez wiele odnawialnych źródeł 
energii, jak na przykład farmy fotowoltaiczne czy wiatrowe, jest 
wysoce zmienna w czasie. Aby system elektroenergetyczny mógł 
przyjąć większą ilość energii z tego rodzaju źródeł konieczne jest 
zastosowanie magazynu energii. Artykuł przedstawia właściwości 
i uproszczone modele ogniw paliwowych typu PEM oraz elektro-
lizerów PEM oraz ocenę możliwości wykorzystania tych urządzeń 
w celu przechowywania energii w formie wytwarzania wodoru.
Słowa kluczowe: smart grid, magazyn energii, wytwarzanie 
wodoru, ogniwa paliwowe, elektrolizer.


