PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 43 | 2 |

Tytuł artykułu

The effect of short-term starvation on some physiological and morphological parameters in juvenile Siberian sturgeon, Acipenser baerii (Actinopterygii: Acipenseriformes: Acipenseridae)

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Fish may experience periods of food deprivation or starvation in nature and under culture conditions. Because of the wild stock reduction of some sturgeon species, Siberian sturgeon, Acipenser baerii Brandt, 1869, has been used as a biological model of physiological and nutritional studies since the 1980s. There are no published records on the physiological responses of Siberian sturgeon to starvation. Hence, in this study the effect of short-term starvation (0, 2, 4, and 8 days) on plasma thyroid hormones (T3 and T4), total protein levels, and hepato-somatic- (HSI), viscero-somatic- (VSI), and digestive-somatic (DSI) indices in juvenile Siberian sturgeon was investigated. Materials and Methods. The experiment was conducted at the International Sturgeon Research Institute of Rasht (Iran) in October 2009, using a semi-natural environment (natural photoperiod and natural water temperature fluctuations). After a period of adaptation (10 days on a formulated diet), 180 juvenile Siberian sturgeon individuals (mean weight ± standard error at start of experiment: 19.32 ± 0.43, n = 15) were randomly distributed among twelve circular, 500-L, fibreglass tanks with a flow-through system. In this trial, control (C) was fed a formulated diet to apparent satiation four times daily throughout the experiment. The other three groups were deprived of feed for 2- (2S), 4- (4S), and 8 (8S) days, respectively. At the end of the starvation periods, blood samples were collected to analyze biochemical and physiological parameters. Results. Plasma T3, T4, and total protein levels did not significantly vary between the fed and the starved fish. In comparison to the starved groups, after 8 days of starvation, plasma total protein in group 8S (3.43 ± 0.20) was markedly higher than in 2S (2.67 ± 0.07) and 4S (2.37 ± 0.12) groups. In the presently reported study, a decrease in the measured morphometric indices was observed with an increase in the length of the starvation period. Conclusion. The results suggest that Siberian sturgeon has metabolic adjustment ability to short periods of starvation due to reduced basal metabolism rate and energy reserves utilization during starvation.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

43

Numer

2

Opis fizyczny

p.145-150,fig.,ref.

Twórcy

autor
  • Department of Fisheries, Faculty of Natural Resources, University of Shahr-e-kord, Shahr-e-kord, Iran
autor
  • Department of Fisheries, Faculty of Marine Natural Resources, Khoramshahr Marine Science and Technology University, Khoramshahr, Iran
autor
  • International Sturgeon Research Institute of Rasht, Guilan, Iran
  • International Sturgeon Research Institute of Rasht, Guilan, Iran
autor
  • International Sturgeon Research Institute of Rasht, Guilan, Iran
autor
  • Persian Gulf Research and Study Centre, Persian Gulf University of Bushehr, Bushehr, Iran
autor
  • Department of Fisheries, Faculty of Natural Resources, University of Shahr-e-kord, Shahr-e-kord, Iran

Bibliografia

  • Ali M., Nicieza A., Wootton R.J. 2003. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries 4 (2): 147–190. DOI: 10.1046/j.1467-2979.2003.00120.x
  • Bayunova L., Barannikova I., Semenkova T. 2002. Sturgeon stress reactions in aquaculture. Journal of Applied Ichthyology 18 (4–6): 397–404. DOI: 10.1046/j.1439-0426.2002.00410.x
  • Bentley P.J. 1998. Hormones and nutrition. Pp. 223–268.In: Bentley P.J. (ed.) Comparative vertebrate endocrinology.3rd edn. Cambridge University Press, UK.
  • Blasco J., Fernández J., Gutiérrez. J. 1992. Fasting and refeeding in carp, Cyprinus carpio L.: the mobilization of reserves and plasma metabolite and hormone variations.Journal of Comparative Physiology B 162 (6): 539–546.DOI: 10.1007/BF00264815
  • Caruso G., Denaro M.G., Caruso R., Genovese L.,Mancari F.,Maricchiolo G. 2012. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): Response of some haematological, biochemical and non specific immune parameters. Marine Environmental Research 81: 18–25.DOI: 10.1016/j.marenvres.2012.07.003
  • Cataldi E., Di Marco P., Mandich A., Cataudella S. 1998.Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces: Acipenseriformes): effects of temperature and stress. Comparative Biochemistry and Physiology, Part A:Molecular and Integrative Physiology 121 (4): 351–354.DOI: 10.1016/s1095-6433(98)10134-4
  • De Pedro N., Delgado M.J., Gancedo B., Alonso-Bedate M. 2003. Changes in glucose, glycogen, thyroid activity and hypothalamic catecholamines in tench by starvation and refeeding. Journal of Comparative Physiology173 (6):475–481. DOI: 10.1007/s00360-003-0355-7
  • Deng L., Zhang W.M., Lin H.R., Cheng C.H.K. 2004. Effects of food deprivation on expression of growth hormone receptor and proximate composition in liver of black seabream Acanthopagrus schlegeli. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology 137 (4): 421–432. DOI: 10.1016/j.cbpc.2004.01.008
  • Duncan D.B. 1955. Multiple range and multiple F tests. Biometrics 11 (1): 1–42.
  • Farbridge K.J., Leatherland J.F. 1992. Temporal changes In plasma thyroid hormone, growth hormone and free fatty acid concentrations, and hepatic 5/-monodeiodinase activity, lipid and protein content during chronic fasting and refeeding in rainbow trout (Oncorhynchus mykiss). Fish Physiology and Biochemistry 10 (3): 245–257. DOI:10.1007/BF00004518
  • Fontagné S., Bazin D., Brèque J., Vachot Ch., Bernarde C.,Rouault Th., Bergot P. 2006. Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon (Acipenser baeri) larvae. Aquaculture 257 (1–4): 400–411. DOI: 10.1016/j.aquaculture.2006.01.025
  • Fuglei E., Aanestad M., Berg J.P. 2000. Hormones and metabolites of arctic foxes (Alopex lagopus) in response to season, starvation and re-feeding. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology 126 (2): 287–294. DOI:10.1016/s1095-6433(00)00211-7
  • Furné M., García-Gallego M., Hidalgo M.C., Morales A.E.,Domezain A., Domezain J., Sanz A. 2008. Effect of starvation and refeeding on digestive enzyme activities in sturgeon (Acipenser naccarii) and trout (Oncorhynchus mykiss).Comparative Biochemistry and Physiology, Part A:Molecular and Integrative Physiology 149 (4): 420–425.DOI: 10.1016/j.cbpa.2008.02.002
  • Furné M., Morales A.E., Trenzado C.E., García-Gallego M., Hidalgo M.C., Domezain A., Sanz Rus A. 2012. The meta-bolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. Journal of Comparative Physiology B 182 (1): 63–76. DOI: 10.1007/s00360-011-0596-9
  • Gaylord T.G., MacKenzie D.S., Gatlin D.M.III 2001. Growth performance, body composition and plasma thyroid hormone status of channel catfish (Ictalurus punctatus) In response to short-term feed deprivation and refeeding. Fish Physiology and Biochemistry 24 (1): 73–79. DOI:10.1023/A:1011199518135
  • Gutiérrez J., Pérez J., Navarro I., Zanuy S., Carrillo M. 1991. Changes in plasma glucagon and insulin associated with fasting in sea bass (Dicentrarchus labrax). Fish Physiology and Biochemistry 9 (2): 107–112. DOI:10.1007/BF02265126
  • Holloway A.C., Reddy P.K., Sheridan M.A., Leatherland J.F.1994. Diurnal rhythms of plasma growth hormone, somatostatin, thyroid hormones, cortisol and glucose concentrations in rainbow trout, Oncorhynchus mykiss, during progressive food deprivation. Biological Rhythm Research 25 (4): 415–432. DOI: 10.1080/09291019409360312
  • Honma Y., Matsui I. 1973. [Histological observations on a specimen of the Japanese eel, Anguiila japonica, under the long-term starvation.] Journal of Shimonoseki University of Fisheries 21 (3): 285–293. [In Japanese.]
  • Hornick J.L., Van Eenaeme C., Gérard O., Dufrasne I.,Istasse L. 2000. Mechanisms of reduced and kompensatory growth. Domestic Animal Endocrinology 19 (2): 121–132.DOI: 10.1016/S0739-7240(00)00072-2
  • Hung S.S.O., Liu W., Li H., Storebakken T., Cui Y. 1997.Effect of starvation on some morphological and biochemical parameters in white sturgeon, Acipenser transmontanus.Aquaculture 151 (1–4): 357–363. DOI: 10.1016/S0044-8486(96)01506-2
  • Ince B.W., Thorpe A. 1976. The effects of starvation and forcefeeding on the metabolism of the northern pike, Esox lucius L.Journal of Fish Biology 8 (1): 79–88. DOI: 10.1111/j.1095-8649.1976.tb03909.x
  • Leatherland J.F., Farbridge K.J. 1992. Chronic casting reduces the responses of the thyroid to growth hormone and TSH, and alters the growth hormone-related changes In hepatic 5/-monodeiodinase activity in rainbow trout,Oncorhynchus mykiss. General and Comparative Endocrinology 87 (3): 342–353. DOI: 10.1016/0016-6480(92)90040-Q
  • Leiner K.A., Han G.S., MacKenzie D.S. 2000. The effects of photoperiod and feeding on the diurnal rhythm of circulating thyroid hormones in the red drum, Sciaenops ocellatus.General and Comparative Endocrinology 120 (1): 88–98.DOI: 10.1006/gcen.2000.7539
  • Love R.M. 1980. Feeding and starvation. Pp. 133–229. In: The chemical biology of fishes, Vol. 2: Advances 1968–1977.Academic Press, London and New York.
  • MacKenzie D.S., VanPutte C.M., Leiner K.A. 1998. Nutrient regulation of endocrine function in fish. Aquaculture 161 (1–4): 3–25. DOI: 10.1016/S0044-8486(97)00253-6
  • McBride J.R. 1967. Effects of feeding on the thyroid, kidney,and pancreas in sexually ripening adult sockeye salmon (Oncorhynchus nerka). Journal of the Fisheries Research Board of Canada 24 (1): 67–76. DOI: 10.1139/f67-007
  • Montserrat N., Gómez-Requeni P., Bellini G., Capilla E.,Pérez-Sánchez J., Navarro I., Gutiérrez J. 2007. Distinct role of insulin and IGF-I and its receptors in white skeletal muscle during the compensatory growth of gilthead sea bream (Sparus aurata). Aquaculture 267 (1–4): 188–198.DOI: 10.1016/j.aquqculture.2007.04.024
  • Navarro I., Gutiérrez J. 1995. Fasting and starvation. Pp.393–434. In: Hochachka P.W., Mommsen T. (eds.)Biochemistry and molecular biology of fishes. Vol. 4.Elsevier, New York, NY, USA.
  • Pérez-Jiménez A., Cardenete G., Hidalgo M.C., García-Alcázar A., Abellán E., Morales A.E. 2012. Metabolic adjustments of Dentex dentex to prolonged starvation and refeeding. Fish Physiology and Biochemistry 38 (4):1145–1157. DOI: 10.1007/s10695-011-9600-2
  • Pérez-Jiménez A., Guedes M.J.,Morales A.E., Oliva-Teles A.2007. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquaculture 265 (1–4): 325–335. DOI: 10.1016/j.aquaculture.2007.01.021
  • Pottinger T.G., Rand-Weaver M., Sumpter J.P. 2003.Overwinter fasting and re-feeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilisation. Comparative Biochemistry and Physiology,Part B: Biochemistry and Molecular Biology 136 (3):403–417. DOI: 10.1016/S1096-4959(03)00212-4
  • Power D.M., Melo J., Santos C.R.A. 2000. The effect of ford deprivation and refeeding on the liver, thyroid hormones and transthyretin in sea bream. Journal of Fish Biology 56 (2):374–387. DOI: 10.1006/jfbi.1999.1165
  • Raine J.C., Cameron C., Vijayan M.M., MacKenzie D.S.,Leatherland J.F. 2005. Effect of fasting on thyroid hormone levels, and TRα and TRβ mRNA accumulation in latestage embryo and juvenile rainbow trout, Oncorhynchus mykiss. Comparative Biochemistry and Physiology, Part A: Molecular and Integrative Physiology 140 (4): 452–459.DOI: 10.1016/j.cbpb.2005.02.007
  • Storebakken T., Shearer K.D., Refstie S., Lagocki S.,McCool J. 1998. Interactions between salinity, dietary carbohydrate source and carbohydrate concentration on the digestibility of macronutrients and energy in rainbow trout (Oncorhynchus mykiss). Aquaculture 163 (3–4): 347–359.DOI: 10.1016/S0044-8486(98)00259-2
  • Van der Geyten S., Mol K.A., Pluymers W., Kühn E.R.,Darras V.M. 1998. Changes in plasma T3 during fasting/refeeding in tilapia (Oreochromis niloticus) are maliny regulated through changes in hepatic type II iodothyronine deiodinase. Fish Physiology and Biochemistry 19 (2):135–143. DOI: 10.1023/A:1007790527748

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a3c0673e-8484-4674-8c14-d91dd41250f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.