PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 26 | 5 |

Tytuł artykułu

Spatial heterogeneity in sensitivity of evapotranspiration to climate change

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Long-term water-energy balance is a major concern in hydrology and water resource management. Evapotranspiration is a key factor for achieving water-energy balance. In this study, we used a simple water and energy balance equation to compare the effects of precipitation and potential evapotranspiration on actual evapotranspiration – mathematically and theoretically. The results showed that, in Baiyangdian catchment, a 1 mm or 10% increase in precipitation would lead to a 0.51 mm or 6.6% in actual evapotranspiration, and a 1 mm or 10% increase in potential evapotranspiration would lead to a 0.14 mm or 3.4% in actual evapotranspiration. The regional differences in the 10 regions of China showed that the effects of climate on actual evapotranspiration were significantly influenced by the aridity index. The changes of potential evapotranspiration will lead to more changes in actual evapotranspiration in humid regions, and the changes of precipitation will lead to more changes in actual evapotranspiration in arid regions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

26

Numer

5

Opis fizyczny

p.2287-2293,fig.,ref.

Twórcy

autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
autor
  • Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
  • Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China
autor
  • Beijing Forestry University, Beijing, 100083, China

Bibliografia

  • 1. Martinez G.F., Gupta H.V. Toward improved identification of hydrological models: A diagnostic evaluation of the “abcd” monthly water balance model for the conterminous United States. Water Resources Research 46, W08507, 2010.
  • 2. Xiong L., Guo S. Appraisal of Budyko formula in calculating long-term water balance in humid watersheds of southern China. Hydrological processes, 26, 1370, 2012.
  • 3. Ziernicka-Wojtaszek A., Zawora T. Thermal Regions in Light of Contemporary Climate Change in Poland. Polish Journal of Environmental Studies, 20 (6), 1627, 2011.
  • 4. Williamson T.N., Nystrom E.A., Milly P.C.D. Sensitivity of the projected hydroclimatic environment of the Delaware River basin to formulation of potential evapotranspiration. Climatic Change, 139 (2), 1, 2016.
  • 5. Mishra V., Lilhare R. Hydrologic sensitivity of Indian sub-continental river basins to climate change. Global & Planetary Change, 139, 78, 2016.
  • 6. Koster R.D., Oki T., Suarez M.J. The Offline Validation of Land Surface Models: Assessing Success at the Annual Timescale. Journal of the Meteorological Society of Japan, 77 (1B), 257, 1999.
  • 7. Milly P.C.D., Betancourt J., Falkenmark M., Hirshch R.M., Kudzewicz Z.W., Lettenmaier D.P., Stouffer R.J. Climate change: Stationarity is dead: whither water management? Science, 319, 573, 2008.
  • 8. Jiang C., Xiong L., Wang D., Liu P., Guo S., Xu C. Separating the impacts of climate change and human activities on runoff using the Budyko-type equations with time-varying parameters. Journal of Hydrology, 522, 326, 2015.
  • 9. Xu K., Milliman J.D., Xu H. Temporal trend of precipitation and runoff in major Chinese Rivers since 1951. Global Planet Change, 73 (3-4), 219, 2010.
  • 10. Immerzeel W.W., Van Beek L.P.H., Bierkens M.F.P. Climate change will affect the Asian water towers. Science, 328 (5984), 1382, 2010.
  • 11. O'Gorman P.A., Schneider T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 106 (35), 14773, 2009.
  • 12. Randal D., Koster Max J., Suarez. A Simple Framework for Examining the Interannual Variability of Land Surface Moisture Fluxes. Journal of Climate, 12 (7), 1911, 1999.
  • 13. Tague C., Dugger A.L. Ecohydrology and Climate Change in the Mountains of the Western USA – A Review of Research and Opportunities. Geography Compass, 4 (11), 1648, 2010.
  • 14. Renner Bernhofer Applying simple water-energy balance frameworks to predict the climate sensitivity of streamflow over the continental United States. Hydrology and Earth System Sciences, 16, 2531, 2012.
  • 15. Budyko M. Climate and life, Academic press, New York, USA, 1974.
  • 16. Zhang L., Hickel K., Dawes W.R. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40, 1, 2004.
  • 17. Oudin L., Andreassian V., Lerat J., MichelC. Has land cover a significant impact on mean annual streamflow? An international assessment using 1508 catchments. Journal of Hydrology, 357, 303, 2008.
  • 18. Andreassian V., Perrin C. On the ambiguous interpretation of the Turc-Budyko non-dimensional graph. Water Resources Research, 48, W10601, 2012.
  • 19. Fu B.P. On the calculation of the evaporation from land surface. Sci. Atmos. Sin. 5, 23, 1981 [in chinese].
  • 20. Tomer M., Schilling K. A simple approach to distinguish land use and climate-change effects on watershed hydrology. Journal of Hydrology, 376, 24, 2009.
  • 21. Yang H.B., Yang D.W., Lei Z.D., Sun F.B. New analytical derivation of the mean annual water-energy balance equation. Water resources research, 44, W03410, 2008.
  • 22. Schaake J., Liu C. Development and application of simple water balance models to understand the relationship between climate and water resources, in: New Directions for Surface Water Modeling Proceedings of the Baltimore Symposium, 1989.
  • 23. Hu S., Liu C., Zheng H., Wang Z., Yu J. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake. J Geogr Sci 22 (5), 895, 2012.
  • 24. Gao G., Fu B., Wang S., Liang W., Jiang X. Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557-558, 331, 2016.
  • 25. Andréassian V., Coron L., Lerat J., Monine N.L. Climate elasticity of streamflow revisited - an elasticity index based on long-term hydrometeorological records. Hydrology & Earth System Sciences Discussions, 12 (4), 3645, 2015.
  • 26. Chen X., Alimoha mmadi N., Wang D. Modeling interannual variability of seasonal evaporation and storage change based on the extended Budyko framework. Water Resources Research, 49 (9), 6067, 2013.
  • 27. Dan L., Ji J., Xie Z., Chen F., Wen G., Richiey J.E. Hydrological projections of climate change scenarios over the 3H region of China: A VIC model assessment. Journal of Geophysical Research Atmospheres, 117 (D11), 11102, 2012.
  • 28. Konapala G., Mishra A.K. Three-parameter-based streamflow elasticity model: application to MOPEX basins in the USA at annual and seasonal scales. Hydrology & Earth System Sciences Discussions, 20 (6), 1, 2016.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a3b764a6-15f7-452c-a4e4-9696d096223a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.