PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 22 | 5 |

Tytuł artykułu

Effects of emergent plant species and growth strategy on microbial community structure and diversity

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A field study was conducted in two adjacent shallow lakes (Aiwan Lake and Qingnian Lake) in Tianjin, China, to investigate the effects of plant species and growth strategy (single or mix) on the microbial community’s structure and diversity in the rhizosphere of emergent plants by phospholipid fatty acid (PLFA) methods. The results demonstrated that microbial biomass was higher in the Typha orientalis (T. orientalis) rhizosphere than that in the Phragmites australis (P. australis) rhizosphere, whether they grew separately or together. The bacterial population of gram-positive bacteria (G⁺) was found to be less than that of the gramnegative bacteria (G⁻) in all samples, and the ratio of G⁺ to G⁻ in the plant rhizosphere was less than that in the non-rhizosphere. The diversity index of plant rhizosphere was higher than that of the non-rhizosphere, and was higher in the T. orientalis rhizosphere than in the P. australis rhizosphere. Cluster analysis demonstrated that microbial community structure was more significantly influenced by plant species than by growth strategy.

Wydawca

-

Rocznik

Tom

22

Numer

5

Opis fizyczny

p.1563-1567,fig.,ref.

Twórcy

autor
  • Key Laboratory of Coordination Chemistry and Functional Materials in Universities of Shandong, Dezhou University, Dezhou, 253023, China

Bibliografia

  • 1. HALLBERG K. B., JOHNSONB. D. Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine, Sci. Total Environ., 338, (1/2), 53, 2005.
  • 2. SIRIVEDHIM T., GRAY K. A. Factors affecting denitrification rates in experimental wetlands: field and laboratory studies,. Ecol. Eng., 26, (2), 167, 2006.
  • 3. RUIZ-RUEDA O., HALLIN S., BANERAS L. Structure and function of denitrifying and nitrifying bacteria communities in relation to the plant species in a constructed wetland,. FEMS Microbiol. Ecol., 67, (2), 308, 2009.
  • 4. DONG X. L., REDDY G. B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique, Bioresour. Technol., 101, (4), 1175, 2010.
  • 5. LI M., ZHOU Q., TAO M., WANG Y., JIANG L., WU Z. Comparative study of microbial community structure in different filter media of constructed wetland, J. Environ. Sci., 22, (1), 127, 2010.
  • 6. AMANN R. I., LUDWIG W., SCHLEIFER K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Mol. Biol. Rev., 59, (1), 143, 1995.
  • 7. RAVIT B., EHRENFELD J. G., HAGGBOLM M. M., BARTELS M. The effects of drainage and nitrogen enrichment on Phragmites australis, Spartina alterniflora, and their root-associated microbial communities, Wetlands, 27, (4), 915, 2007.
  • 8. HE Y., XU, J., LV, X., MA Z., WU J., SHI J. Does the depletion of pentachlorophenol in root-soil interface follow a simple linear dependence on the distance to root surfaces? Soil Biol. Biochem., 41, 1807, 2009.
  • 9. ZELLES L. Phospholipid fatty acids profiles in selected members of soil microbial communities, Chemosphere, 35, (1-2), 275, 1997.
  • 10. LU X., FAN J., YAN Y., WANG X. Comparison of soil microbial biomass and enzyme activities among three alpine grassland types in Northern Tibet. Pol. J. Environ. Stud., 22, (2), 437, 2013.
  • 11. KLIKOCKA H., NAROLSKI B., KLIKOCKA O., GLOWACKA A., JUSZCZAK D., ONUCH J., GAJ R., MICHALKIEWICZ G., CYBULSKA M., STEPANIUK S. The effect of soil tillage and nitrogen fertilization on microbial parameters of soil on which spring triticale is grown. Pol. J. Environ. Stud., 21, (6), 1675, 2012.
  • 12. SINGH N., MEGHARAJ M., KOOKANA R. S., NAIDU R., SETHUNATHAN N. Atrazine and simazine degradation in Pennisetum rhizosphere, Chemosphere, 56, 257, 2004.
  • 13. ZHANG Q., ZHOU Q., REN L., ZHU Y., SUN S. Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres, J. Environ. Sci., 18, (6), 1101, 2006.
  • 14. FAN S., LI P., GONG Z., REN W., HE N. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.), Chemosphere, 71, (8), 1593, 2008.
  • 15. HEINRICH D., HESS D. Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractants, Can. J. Microbiol., 31, 26, 1985.
  • 16. JENKINS M. B., LION L. W. Mobile bacteria and transport of poly-nuclear aromatic hydrocarbons in porous media, Appl. Environ Microbiol, 59, (10), 3306, 1993.
  • 17. SMALLA K., WIELAND G., BUCHNER A., ZOCK A., PARZY J., KLAISER S., ROSKOT N., HEUER H., BERG G.. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: Plant-dependent enrichment and seasonal shifts revealed, Appl. Environ. Microbiol., 67, 4742, 2001.
  • 18. BERG G., ROSKOT N., STEIDLE A., EBERL L., ZOCK A., SMALLA K. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants, Appl. Environ. Microbiol., 68, 3328, 2002.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a39a7a17-08fa-4b61-b04c-675881ebced7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.