Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2002 | 07 | 2A |

Tytuł artykułu

The mapping of QTLs for chlorophyll content and responsiveness to gibberellic (GA3) and abscisic (ABA) acids in rye

Warianty tytułu

Języki publikacji



Genetic maps containing molecular markers are useful tools for the identification of genes underlying quantitative traits (QTLs). Three traits important for plant physiology, i.e. chlorophyll content, sensitivity to GA and sensitivity to ABA, were evaluated for 99 F2 families of the DS2 x RXLl0 rye mapping population. The observed variation in the chlorophyll content in rye leaves was shown to be under the genetic control of four independent QTLs. They were located on the following chromosome arms: 1RL (QChc-1R.I), 3RS (QChc-3R.1), 4RL (QChc-4R.1) and 5RL (QChc-5R.1) The marker-assisted selection of recombinants comprising positively-acting alleles at these loci may significantly increase the chlorophyll content in rye leaves, which should result in a higher efficiency of photosynthesis. A decreasing of plant height in rye is one of the major aims of breeders selecting for lodging resistance. The polymorphism of genes controlling sensitivity to gibberellic acid may be the basis for a potential selection strategy. Three QTLs underlying the sensitivity of rye seedlings to GA were located on chromosomes 5RL (QGar-5R.I), 1RL (QGar-1R.1) and on 7RL (QGar-7R.I). The dwarfing allele of a Dw1 locus present in line RXL10 was mapped in the same position as the QGar-5R.1 gene. Sensitivity to ABA plays an important role in imposing dormancy in rye grain. Three QTLs affecting sensitivity to ABA were found. They were mapped on chromosomes 1RS (QAbr-1R.1), 2R in the centromeric region (QAbr-2R.1) and on 5RL (QAbr-5R.1). QAbr-5R.1, Dw1 and QGar-5R.1 are located in the same position on the distal part of the 5RL chromosome arm, which suggests that they belong to a single locus for a major regulatory gene controlling the development of rye plants.








Opis fizyczny



  • Department of Genetics and Plant Breeding, Agricultural University, Slowackiego 17, 71-434 Szczecin, Poland
  • Department of Genetics and Plant Breeding, Agricultural University, Slowackiego 17, 71-434 Szczecin, Poland


  • 1. Jansen, R. C. and Stam, P. High resolution of quantitative traits into multiple loci via interval mapping Genetics 136 (1994) 1447-1455.
  • 2. Subudhi, P. K., Rosenow, D. T. and Nguyen, H. T. Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor. Appl. Genet. 101 (2000) 733-741.
  • 3. Xu, W., Rosenow, D. T. and Nguyen, H. T. Stay green trait in grain sorghum: relationship between visual rating and leaf chlorophyll concentration. Plant Breed. 119 (2000) 365-367.
  • 4. Korzun, V., Malyshev, S., Voylokov, A. V. and Borner, A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102 (2001) 709-717.
  • 5. Borner, A and Korzun, V. Genetics and comparative mapping of genes controlling plant height and development. Vortr. Pflanzenzuchtg. 35 (1996) 273-279.
  • 6. Plaschke, J., Korzun, V., Koebner, R. M. D. and Börner, A. Mapping the GA3-insensitive dwarfing gene ct1 on chromosome 7 in rye. Plant Breed. 114 (1995) 113-116.
  • 7. Devos, K. M., Atkinson, M. D., Chinoy, C. N., Francis, H. A., Harcourt, R. L., Koebner, R. M. D., Liu, C. J., Masojć, P., Xie, D. X. and Gale, M. D. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85 (1993) 673-680.
  • 8. McCarty, D. R., Hattori, T., Carson, C. B., Vasil, V., Lazar, M. and Vasil, I. K. The viviparous-I developmental gene of maize encodes a novel transcriptional activator. Cell 66 (1991) 895-905.
  • 9. Steber, C. M., Cooney, S. and McCourt, P. Isolation of the GA-response mutant sly1 as a suppresor of ABI1-1 in Arabidipsis thaliana. Genetics 149 (1998) 509-521.
  • 10. Bailey, P. C., McKibbin, R. S., Lenton, J. R., Holdsworth, M. J., Flintham, J. E. and Gale, M. D. Genetic map locations for orthologous Vp1 genes in wheat and rice. Theor. Appl. Genet. 98 (1999) 281-284.
  • 11. Walker-Simmons, M. ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84 (1987) 61-66.
  • 12. Masojć, P., Stojałowski, S. and Milczarski, P. Use of rye inbred line Ot1-3 as a source of genes for sprouting resistance. Hod. Rośl. Nasien. Biul. Branż. (PL) 2 (1996) 1-4.
  • 13. Gregorczyk, A. Raczyńska, A. and Pacewicz, K. Analysis of the standard curves for chlorophyll content in main species of cereals. Biul. Magnez. (PL) 3 (1998) 19-24.
  • 14. Jlibene, M. and Gustafson, J. P. The identification of a gibberellic- acid-insensitive gene in Secale cereale. Plant Breed. 108 (1992) 229-233.
  • 15. Masojć, P., Myśków, B. and Milczarski, P. Extending a RFLP -based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor. Appl. Genet. 102 (2001) 1273-1279.
  • 16. Lincoln, S. E., Daly, M. J. and Lander, E. S. Mapping genes controlling quantitative traits using MAPMAKER/QTL version 1.1. A tutorial and reference manual, Second edition, (1993).
  • 17. Milczarski, P. and Masojć, P. Interval mapping of genes controlling growth of rye plants. Plant Breed. Seed Sci., in press.
  • 18. Koornneef, M., Bentsink, L. and Hilhorst, H. Seed dormancy and germination. Curr. Op. Plant Biol. 5 (2002) 33-36.
  • 19. Masojć, P., Milczarski, P. and Myśków, B. Identification of genes underlying sprouting resistance in rye. In: Eight Internat. Symp. Pre-harvest Sprouting in Cereals. (D. Weipert Ed.) Association of Cereal Research, Federal Centre for Cereal, Potato and Lipid Research Detmold, Germany, 131-136.

Typ dokumentu



Identyfikator YADDA

JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.