PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 10 |

Tytuł artykułu

Stress-induced changes to the flora in a geothermal field in central Italy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The vegetation profile and the photosynthetic efficiency, oxidative damage, and stomatal conductance in the evergreen dwarf shrub Calluna vulgaris (L.). Hull was analyzed in a Mediterranean ecosystem characterized by intense geothermal activity. Among the higher plants present in the area, this species appears to be the sole to possess the ability to grow near the geothermal sources. The hot fluid springs strongly alter the environment in their proximity: the emitted water vapor, CO2, H2S, CH4, H3BO3, SO4 2-, and NH4 + partly condensate and precipitate to the soil, thus leading to its extreme acidification and nutrient depletion. Furthermore, the temperature starts to rise sharply just a few centimeters under the soil surface. Under this multiple stress, the individuals of C. vulgaris growing within a few meters from the springs showed lower photosystem II efficiency, higher oxidative damage to the biomembranes, and lower stomatal conductance than the individuals growing farther away. Drought and high air temperatures occurring in summer exacerbate these harsh conditions, but only the plants closer to the springs did undergo an acute, yet transient crisis, as shown by the analyzed parameters. These results suggest that the main factors of stress are related to the physical and chemical features of the soil, while the adverse climate conditions apparently are of secondary importance. The possible role of reduced stomatal conductivity in enhancing the resistance of C. vulgaris to this hostile environment is discussed.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

10

Opis fizyczny

Article: 198 [10 p.], fig.,ref.

Twórcy

autor
  • Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy
autor
  • Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy
autor
  • Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy
autor
  • Department of Biology, University of Pisa, via L. Ghini, 13, 56126, Pisa, Italy

Bibliografia

  • Albert KR, Mikkelsen TN, Michelsen A, Ro-Poulsen H (2011) Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J Plant Physiol 168:1560–1561
  • Baker NR (1991) A possible role for photosystem II in environmental perturbation of photosynthesis. Physiol Plant 81:563–570
  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113
  • Bargagli-Petrucci G (1916) Studii sulla Flora Microscopica della Regione Boracifera Toscana. Nuovo Giornale Botanico Italiano 23:171–184
  • Bartoli G, Bottega S, Forino LMC, Ruffini Castiglione M, Tagliasacchi AM, Grilli I, Spanó C (2013) Morpho-physiological plasticity contributes to tolerance of Calluna vulgaris in an active geothermal field. Aust J Bot 61:107–118
  • Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163
  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194
  • Bolhár-Nordenkampf HR, Öquist G (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bolhár-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual, Chapman & Hall, London, pp 193–206
  • Burns B (1997) Vegetation change along a geothermal stress gradient at Te Kopia steamfield. J R Soc New Zeal 27:279–294
  • Bussotti F, Tognelli R, Montagni G, Borghini F, Bruschi P, Tani C (2003) Response of Quercus pubescens leaves exposed to geothermal pollutant input in southern Tuscany (Italy). Environ Pollut 121:349–361
  • Chiarucci A, Calderisi M, Casini F, Bonini I (2008) Vegetation at the limits for vegetation: vascular plants, bryophytes and lichens in a geothermal field. Folia Geobot 43:19–33
  • De Martonne E (1926) L’indice d’aridité. Bulletin de l’Association des Geographes Francais 9:3–5
  • Dhindsa RS, Plumb-Dhindsa P, Thorpe T (1981) Leaf senescence: correlated with increase leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101
  • Duchi V, Manganelli M, Minissale A (1991) Composizione chimica delle fasi fluide naturali superficiali del campo geotermico di Larderello. Boll Soc Geol Ital 110:41–46
  • Figueroa ME, Ferna´ndez-Baco L, Luque T, Davy AJ (1997) Chlorophyll fluorescence, stress and survival in populations of Mediterranean grassland species. J Veg Sci 8:881–888
  • Fiori A (1920) Rilievi geografici e forestali sulla flora del bacino della Cecina e localitá finitime. Annuario Reale dell’Istituto Superiore Forestale Nazionale di Firenze 5:151–186
  • Gimingham GH (1960) Biological flora of the British isles. Calluna vulgaris (L.) Hull. A monotypic genus. J Ecol 48:455–471
  • Glime JM, Iwatsuki Z (1994) Geothermal communities of Ponponyama, Hokkaido. J Hattori Bot Lab 75:133–147
  • Greenwood NN, Earnshaw A (1985) Chemistry of the Elements. Pergamon Press, Oxford
  • Haynes RJ, Swift RS (1986) Effects of soil acidification and subsequent leaching on levels of extractable nutrients in a soil. Plant Soil 95:237–336
  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid reactive substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611
  • Huang B, Liu X, Xu Q (2001) Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Sci 41:430–435
  • Hughes LL (2002) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61
  • Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263
  • Lichtenthaler HK (1988) In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence in photosynthesis research, stress physiology, hydrobiology and remote sensing. Kluwer Academic Publishers, Dordrecht, pp 129–142
  • Liu X, Huang B (2005) Root physiological factors involved in coolseason grass response to high soil temperature. Environ Exp Bot 53:233–245
  • Llorens L, Peñuelas J, Beier C, Emmett B, Estiarte M, Tietema A (2004) Effects of an experimental increase of temperature and drought on the photosynthetic performance of two ericaceous shrub species along a north-south European gradient. Ecosystems 4:613–624
  • Lyons EM, Pote J, DaCosta M, Huang B (2007) Whole-plant carbon relations and root respiration associated with root tolerance to high soil temperature for Agrostis grasses. Environ Exp Bot 59:307–313
  • Marschner H (1991) Mechanism of adaptation of plant to acid soils. Plant Soil 134:1–20
  • Mishra RK, Singhal GS (1992) Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with peroxidation of thylakoid lipids. Plant Physiol 98:1–6
  • Pais I, Jones JB (1997) The handbook of trace elements. St. Lucie Press, Boca Raton
  • Peñuelas J, Filella I, Tognetti R (2001) Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Glob Change Biol 7:291–301
  • Selvi F, Bettarini I (1999) Geothermal biotopes in central-western Italy from a botanical view point. In: Raschi A, Vaccari F, Miglietta F (eds) Ecosystem response to CO2: the MAPLE project results. The European Commission, Research Directorate, Brussels, pp 1–12
  • Singh A, Agrawal M (2008) Acid rain and its ecological consequences. J Environ Biol 29:15–24
  • Snee RD (1973) Some aspects of nonorthogonal data analysis, Part I. Developing prediction equations. J Qual Technol 5:67–79
  • Soil Survey Division Staff (1993) Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18
  • Takahashi S, Milward SE, Fan DY, Chow WS, Badger MR (2009) How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567
  • Tognetti R, Cherubini P, Innes JL (2000) Comparative stem-growth rates of Mediterranean trees under background and naturally enhanced ambient CO2 concentrations. New Phytol 146:59–74
  • Tomei PE, Focardi D, Kugler PC, Maggini A, Palazzo D, Pippucci A, Trimarchi S, Vatti M (2008) Approfondimenti conoscitivi su alcune aree di interesse ambientale del Piano Territoriale di Coordinamento,Flora e Vegetazione. Convenzione tra la provincia di Pisa e il dipartimento di Biologia dell’Universitá di Pisa. Provincia di Pisa, Pisa
  • Violante P (2002) Chimica del suolo e della nutrizione delle piante. Edagricole, Bologna
  • Walther GR, Post E, Convey P, Menzel A, Parmesank A, Beebee TJC, Fromentin JM, Hoegh-Guldberg IO, Bairlein F (2002) Ecological responses to recent climate change, Review Article. Nature 416:389–395
  • Wang Z, Pote J, Huang B (2003) Responses of cytokinins, antioxidant enzymes, and lipid peroxidation in shoots of creeping bentgrass to high root-zone temperatures. J Am Soc Hortic Sci 128:648–655
  • Xu Q, Huang B (2000) Growth and physiological responses of creeping bentgrass to changes in air and soil temperatures. Crop Sci 40:1363–1368

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a2fea658-dbc2-4594-b551-e1ae6724e205
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.