PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 41 | 09 |

Tytuł artykułu

Physiological behaviors and fruit quality changes in five peach cultivars during three ripening stages in a semi-arid climate

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present study, five Prunus persica L. cultivars, covering all the peach season production in Tunisia, were tested. Flordastar (FS) and Early Maycrest (EMC) which are early cultivars, Rubirich (RUB) which is a cultivar of season and Sweet Cap (SC) and O’Henry (O’H) which are late cultivars. Phenological stages and gas exchange parameters were followed. Fruit quality, sugar and organic acids profile as well as bioactive compounds and antioxidant activities were investigated in exocarp and mesocarp during three ripening stages (1, 2 and 3). The results showed a significant difference in chlorophyll content and assimilation rate among cultivars. In addition, significant difference found in total phenol contents among cultivars and it was ranged in mesocarp between 673.61 and 1966.21 mg 100 g⁻¹ DW in RUB and SC, respectively, during stage 1. During ripening, there was a significant rise in sugar and soluble solids content and a decrease in citric and malic acids in addition to titratable acidity. Phenolic compounds decreased during ripening as well as ABTS and DPPH activities. ABTS activity decreased by 58.35% for FS mesocarp while DPPH activity decreased by 40.81% from stage 1 to stage 3. In conclusion, our results attested that fruit in stage 1 was more abundant in organic acid and phenolic compounds, while fruit in stage 3 was less firm, had best color and concentrated with sugar and total soluble contents. Sweet Cap cultivar exhibited a high phenolic compounds concentration and great antioxidant activity compared to other cultivars.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

41

Numer

09

Opis fizyczny

Article 154 [18p.], fig.,ref.

Twórcy

autor
  • Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Dentistry Faculty, University of Monastir, Monastir, Tunisia
  • Institution of Research and Higher Education Agriculture (IRESA), Regional Center for Agricultural Research, 9100 Sidi Bouzid, Tunisia
autor
  • Institution of Research and Higher Education Agriculture (IRESA), Regional Center for Agricultural Research, 9100 Sidi Bouzid, Tunisia
  • Non‑Conventional Water Valuation Research Laboratory (LR VENC), INRGREF, Hedi EL Karray Street, El Menzah IV, 1004 Tunis, Tunisia
autor
  • Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Dentistry Faculty, University of Monastir, Monastir, Tunisia
  • Dentistry Faculty, University of Monastir, Avicenne Street, 5019 Monastir, Tunisia
autor
  • Department of Applied Biology, University Miguel Hernandez, Elche, Spain
autor
  • Institution of Research and Higher Education Agriculture (IRESA), Regional Center for Agricultural Research, 9100 Sidi Bouzid, Tunisia
  • Non‑Conventional Water Valuation Research Laboratory (LR VENC), INRGREF, Hedi EL Karray Street, El Menzah IV, 1004 Tunis, Tunisia
autor
  • Department of Pharmaceutical Sciences, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
  • Laboratory of Bioresources: Integrative Biology and Valorization at Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
  • Unit of Bioactive and Natural Substances and Biotechnology UR17ES49, Dentistry Faculty, University of Monastir, Monastir, Tunisia
  • Department of Pharmaceutical Sciences, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia

Bibliografia

  • Abu Bakar MF, Karim FA, Perisamy E (2015) Comparison of phytochemicals and antioxidant properties of different fruit parts of selected artocarpus species from sabah, Malaysia. Sains Malays 44:355–363. https://doi.org/10.17576/jsm-2015-4403-06
  • Bassi D, Mignani I, Spinardi A, Tura D (2016) Peach (Prunus persica (L.) Batsch). In: Simmonds MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars. Elsevier Inc., pp 535–571
  • Borsani J, Budde CO, Porrini L et al (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837. https://doi.org/10.1093/jxb/erp055
  • Bouzayen M, Latché A, Nath P, Jean-claude J (2010) Mechanism of fruit ripening. In: Pua EC, Davey MR (eds) Plant developmental biology—biotechnological perspectives. Springer, New York, p 487
  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30
  • Brooks SJ, Moore JN, Murphy JB (1993) Quantitative and qualitative changes in sugar content of peach genotypes [Prunus persica (L.) Batsch.]. J Am Soc Hortic Sci 118:97–100
  • Byrne DH, Nikolic AN, Burns EE (1991) Variability in sugars, acids, firmness, and color characteristics of 12 peach genotypes. J Am Soc Hortic Sci 116:1004–1006
  • Chalmers DJ, Canterford RL, Jerie PH et al (1975) Photosynthesis in relation to growth and distribution of fruit in peach trees. Aust J Plant Physiol 2:635–645
  • Crews CE, Williams SL, Vines HM (1975) Characteristics of photosynthesis in peach leaves. Planta 126:97–104. https://doi.org/10.1007/BF00380612
  • Crisosto C, Valero D (2008) Harvesting and postharvest handling of peaches for the fresh market. In: Layne DR, Bassi D (eds) The peach: botany, production and uses, CAB International, pp 575–596
  • Dabbou S, Issaoui M, Esposto S et al (2009) Cultivar and growing area effects on minor compounds of olive oil from autochthonous and European introduced cultivars in Tunisia. J Sci Food Agric. https://doi.org/10.1002/jsfa.3588
  • Dabbou S, Lussiana C, Maatallah S et al (2016) Changes in biochemical compounds in fl esh and peel from Prunus persica fruits grown in Tunisia during two maturation stages. Plant Physiol Biochem 100:1–11. https://doi.org/10.1016/j.plaphy.2015.12.015
  • Desnoues E, Gibon Y, Baldazzi V et al (2014) Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biol 14:12–14. https://doi.org/10.1186/s12870-014-0336-x
  • Di Miceli C, Infante R, Inglese P et al (2010) Instrumental and sensory evaluation of eating quality of peaches and nectarines. Eur J Hortic Sci 75:97–102
  • Eitel JUH, Long DS, Gessler PE et al (2009) Sensitivity of ground-based remote sensing estimates of wheat chlorophyll content to variation in soil reflectance. Soil Sci Soc Am J 73:1715. https://doi.org/10.2136/sssaj2008.0288
  • Etienne A, Génard M, Lobit P, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot. https://doi.org/10.1093/jxb/ert035
  • Forcada CFI, Oraguzie N, Igartua E et al (2013) Population structure and marker—trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes. https://doi.org/10.1007/s11295-012-0553-0
  • Gapper NE, McQuinn RP, Giovannoni JJ (2013) Molecular and genetic regulation of fruit ripening. Plant Mol Biol 82:575–591. https://doi.org/10.1007/s11103-013-0050-3
  • Gil MI, Toma-Barberan FA, Hess-Pierce B, Kader AA (2002) Antioxidant capacities, phenolic compounds, carotenoids, and vitamin C contents of nectarine, peach, and plum cultivars from California. J Agric Food Chem 50:4976–4982
  • Goulao LF, Oliveira CM (2008) Cell wall modifications during fruit ripening: when a fruit is not the fruit. 19:4–25. https://doi.org/10.1016/j.tifs.2007.07.002
  • Guarnieri A, Martelli R, Berardinelli A, Vannini L (2014) Harvesting and field packing of tree-ripened peach fruits, critical evaluation. Ital J Food Sci 26:190–196
  • Guizani M, Dabbou S, Maatallah S, Montevecchi G (2019) Physiological responses and fruit quality of four peach cultivars under sustained and cyclic deficit irrigation in center-west of Tunisia. Agric Water Manag 217:81–97. https://doi.org/10.1016/j.agwat.2019.02.021
  • Layne D, Bassi D (2008) The peach: botany, production and uses. CAB International, p 596
  • Liu H, Cao J, Jiang W (2015) Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene. Postharvest Biol Technol 108:111–118. https://doi.org/10.1016/j.postharvbio.2015.06.012
  • Meier VU, Graf H, Hack H et al (1994) Phänologische Entwicklungsstadien des Kernobstes (Malus domestica Borkh. und Pyrus communis L.), des Steinobstes (Prunus-Arten), der Johannisbeere (Ribes-Arten) und der Erdbeere (Fragaria × ananassa Duch.). Nachrichtenbl Deut Pflanzenschutzd 46:141–153
  • Monet R (1983) Le pêcher: Génétique et physiologie. 12 Masson, Paris
  • Montedoro G, Servili M, Baldioli M, Miniati E (1992) Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J Agric Food Chem 40:1571–1576
  • Montevecchi G, Antonelli A, Masino F et al (2013) Fruit sensory characterization of four Pescabivona, white-fleshed peach [Prunus persica (L.) Batsch], landraces and correlation with physical and chemical parameters. Fruits 68:195–207. https://doi.org/10.1051/fruits/2013067
  • Moriguchi T, Ishizawa Y, Sanada T (1990) Differences in sugar composition in Prunus persica fruit and the classification by the principal component analysis. J Jpn Soc Hortic Sci 59:307–312. https://doi.org/10.2503/jjshs.59.307
  • Muhammad I, Ashiru S, Ibrahim I et al (2014) Effect of ripening stage on vitamin C content in selected fruits. Int J Agric For Fish 2:60–65
  • Nweze CC, Abdulganiyu MG, Erhabor OG (2015) Comparative analysis of vitamin c in fresh fruits juice of Malus domestica, Citrus sinensi, Ananas comosus and Citrullus lanatus by iodometric titration. Int J Sci Environ Technol 4:17–22
  • Orazem P, Stampar F, Hudina M (2011a) Quality analysis of ‘Redhaven’ peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chem 124:1691–1698. https://doi.org/10.1016/j.foodchem.2010.07.078
  • Orazem P, Stampar F, Hudina M (2011b) Fruit quality of Redhaven and Royal Glory peach cultivars on seven different rootstocks. J Agric Food Chem 59:9394–9401
  • Oyaizu M (1986) Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44:307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
  • Ozgen M, Reese RN, Tulio AZ et al (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J Agric Food Chem 54:1151–1157. https://doi.org/10.1021/jf051960d
  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Anal Biochem 269:337–341
  • Prinsi B, Negri AS, Fedeli C et al (2011) Peach fruit ripening: a proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages. Phytochemistry 72:1251–1262. https://doi.org/10.1016/j.phytochem.2011.01.012
  • Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical. Free Radic Biol Med 26:1231–1237
  • Reig G, Iglesias I, Gatius F, Alegre S (2013) Antioxidant capacity, quality, and anthocyanin and nutrient contents of several peach cultivars [Prunus persica (L.) Batsch] grown in Spain. J Agric Food Chem 61:6344–6357. https://doi.org/10.1021/jf401183d
  • Remorini D, Tavarini S, Innocenti ED et al (2008) Effect of rootstocks and harvesting time on the nutritional quality of peel and flesh of peach fruits. Food Chem 110:361–367. https://doi.org/10.1016/j.foodchem.2008.02.011
  • Romani A, Mancini P, Tatti S, Vincieri FF (1996) Polyphenols and polysaccharides in Tuscan grapes and wines. Ital J Food Sci 8:13–24
  • Rossato SB, Haas C, Raseira MDCB et al (2009) Antioxidant potential of peels and fleshes of peaches from different cultivars. J Med Food 12:1119–1126
  • Sanxter S, Yamamoto H, Fisher D, Chan H (1992) Development and decline of chloroplasts in exocarp of Carica papaya. Can J Bot 70:364–373
  • Scordino M, Sabatino L, Muratore A et al (2012) Phenolic characterization of Sicilian yellow flesh peach (Prunus persica L.) cultivars at different ripening stages. J Food Qual 35:255–262
  • Serrano M, Guillén F, Martinez- Romero D et al (2005) Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J Agric Food Chem 53:2741–2745
  • Stojanovic BT, Mitic SS, Stojanovic GS et al (2016) Phenolic profile and antioxidant activity of pulp and peel from peach and nectarine fruits. Not Bot Horti Agrobot 44:175–182. https://doi.org/10.15835/nbha44110192
  • Wu B, Ge M, Gomez L, Li S (2002) Influence of assimilate and water supply on seasonal variation of acids in peach (cv Suncrest). J Sci Food Agric 82:1829–1836. https://doi.org/10.1002/jsfa.1267
  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a2f85b44-77fe-4cc7-ba5a-e4e4681b459d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.