PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 2 |

Tytuł artykułu

Anandamide in the anterior hypothalamus diminishes defensive responses elicited in mice threatened by Epicrates cenchria constrictor serpents

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The purpose of this study was to investigate whether the panicolytic‑like effect of different doses of anandamide microinjected into the anterior hypothalamus (AH) follows the same pattern of a bell‑shaped dose‑response curve observed with the same dose treatment in dorsomedial and ventromedial hypothalamus. We investigated this assumption by administering the cannabinoid and vanilloid receptor agonist anandamide into the anterior hypothalamus of mice and exposing them to the real threatening situation by using our experimental model based on confrontations between rodents and wild snakes. Our findings showed a gradual decay of response, with a significant attenuation of the panic attack‑like responses with anandamide at the highest dose but no effect was found after anandamide at the lowest or intermediate doses. An immunohistochemical procedure showed a lower degree of TRPV1 receptor and moderate to higher degree of Cb1 receptors in anterior hypothalamus. In conclusion, the pattern of dose‑response curve of anandamide microinjected in the AH does not seem to be the same classical pattern compared with other hypothalamic nuclei.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

2

Opis fizyczny

p.179-191,fig.,ref.

Twórcy

  • Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo (FMRP‑USP), Sao Paulo, Brazil
  • NAP‑USP‑Neurobiology of Emotions Research Centre (NuPNE), Ribeirao Preto Medical School, University of Sao Paulo (FMRP‑USP), Sao Paulo, Brazil
  • Ophidiarium LNN‑FMRP‑USP/INeC, Ribeirao Preto School of Medicine, University of Sao Paulo (FMRP‑USP), Sao Paulo, Brazil
autor
  • Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo (FMRP‑USP), Sao Paulo, Brazil
  • NAP‑USP‑Neurobiology of Emotions Research Centre (NuPNE), Ribeirao Preto Medical School, University of Sao Paulo (FMRP‑USP), Sao Paulo, Brazil
  • Behavioural Neuroscience Institute (INeC), Sao Paulo, Brazil
  • Ophidiarium LNN‑FMRP‑USP/INeC, Ribeirao Preto School of Medicine, University of Sao Paulo (FMRP‑USP), Sao Paulo, Brazil

Bibliografia

  • Almada RC, Coimbra NC (2015) Recruitment of striatonigral disinhibitory and nigrotectal inhibitory GABAergic pathways during the organization of defensive behavior by mice in a  dangerous environment with the venomous snake Bothrops alternatus (Reptilia, Viperidae). Synapse 69: 299–313.
  • Almada RC, Roncon CM, Elias‑Filho DH, Coimbra NC (2015) Endocannabinoid signaling mechanisms in the substantia nigra pars reticulata modulate GABAergic nigrotectal pathways in mice threatened by urutu‑cruzeiro venomous pit viper. Neuroscience 303: 503–514.
  • Almada RC, Genewsky AJ, Heinz DE, Kaplick PM, Coimbra NC, Wotjak CT (2018) Stimulation of the nigrotectal pathway at the level of the superior colliculus reduces threat recognition and causes a shift from avoidance to approach behavior. Front Neural Circuits 12: 36.
  • Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am J Physiol 84: 490–515.
  • Batista LA, Bastos JR, Moreira FA (2015) Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic‑like responses. J Psychopharmacol 29: 335–343.
  • Blanchard DC, Griebel G, Blanchard RJ (2001) Mouse defensive behaviors: pharmacological and behavioral assays for anxiety and panic. Neurosci Biobehav Rev 25: 205–218.
  • Blanchard RJ, Griebel G, Henrie JA, Blanchard DC (1997) Differentiation of anxiolytic and panicolytic drugs by effects on rat and mouse defense test batteries. Neurosci Biobehav Rev 21: 783–789.
  • Biagioni AF, dos Anjos‑Garcia T, Ullah F, Fisher IR, Falconi‑Sobrinho LL, de Freitas RL, Coimbra NC (2016) Neuroethological validation of an experimental apparatus to evaluate oriented and non‑oriented escape behaviours: Comparison between the polygonal arena with a burrow and the circular enclosure of an open‑field test. Behav Brain Res 298: 65–77.
  • Brandão ML, Di Scala G, Bouchet MJ, Schmitt P (1986) Escape behavior produced by the blockade of glutamic acid decarboxylase (GAD) in mesencephalic central gray or medial hypothalamus. Pharmacol Biochem Behav 24: 497–501.
  • Casarotto PC, Terzian ALB, Aguiar DC, Zangrossi H, Guimarães FS, Wotjak CT, Moreira FA (2012) Opposing roles for cannabinoid receptor type‑1 (CB1) and transient receptor potential vanilloid type‑1 channel (trpv1) on the modulation of panic‑like responses in rats. Neuropsychopharmacology 37: 478–486.
  • Coimbra NC, Paschoalin‑Maurin T, Bassi G, Kanashiro A, Biagioni A, Felippotti T, Elias‑Filho, DH, Mendes‑Gomes J, Cysne‑Coimbra JP, Almada RC, Lobão‑Soares B (2017) Critical neuropsychobiological analysis of panic attack‑ and anticipatory anxiety‑like behaviors in rodents confronted with snakes in polygonal arenas and complex labyrinths: a comparison to the elevated plus‑ and T‑maze behavioral tests. J Bras Psiquiatr 39: 72–83.
  • Craske MG, Stein MB (2016) Anxiety. Lancet 388: 3048–3059.
  • Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, Wittchen H (2017) Anxiety disorders. Nat Rev Dis Prim 3: 17024.
  • Di Scala G, Schmitt P, Karli P (1984) Flight induced by infusion of bicuculline methiodide into periventricular structures. Brain Res 309: 199–208.
  • dos Anjos‑Garcia T, Ullah F, Falconi‑Sobrinho LL, Coimbra NC (2017) CB1 cannabinoid receptor‑mediated anandamide signalling reduces the defensive behaviour evoked through GABAA receptor blockade in the dorsomedial division of the ventromedial hypothalamus. Neuropharmacology 113: 155–166.
  • dos Anjos‑Garcia T, Coimbra NC (2019) Opposing roles of dorsomedial hypothalamic CB1 and TRPV1 receptors in anandamide signaling during the panic‑like response elicited in mice by Brazilian rainbow Boidae snakes. Psychopharmacology 236: 1863–1874.
  • Elokely K, Velisetty P, Delemotte  L, Palovcak E, Klein ML, Rohacs T, Carnevale V (2016) Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci 113: E137–E145.
  • Falconi‑Sobrinho LL, dos Anjos‑Garcia T, de Oliveira R, Coimbra NC (2017a) Decrease in NMDA receptor‑signaling activity in the anterior cingulate cortex diminishes defensive behaviour and unconditioned fear‑induced antinociception elicited by GABAergic tonic inhibition impairment in the posterior hypothalamus. Eur Neuropsychopharmacol 27: 1120–1131.
  • Falconi‑Sobrinho LL, dos Anjos‑Garcia T, Elias‑Filho DH, Coimbra NC (2017b) Unravelling cortico‑hypothalamic pathways regulating unconditioned fear‑induced antinociception and defensive behaviours. Neuropharmacology 113: 367–385.
  • Falconi‑Sobrinho LL, Coimbra NC (2018) The nitric oxide donor sin‑1‑produced panic‑like behaviour and fear‑induced antinociception are modulated by NMDA receptors in the anterior hypothalamus. J Psychopharmacol 32: 711–722.
  • Finn DP, Jhaveri MD, Beckett SR, Roe CH, Kendall DA, Marsden CA, Chapman V (2003) Effects of direct periaqueductal grey administration of a cannabinoid receptor agonist on nociceptive and aversive responses in rats. Neuropharmacology 45: 594–604.
  • Gross CT, Canteras NS (2012) The many paths to fear. Nat Rev Neurosci 13: 651–658.
  • Heinz DE, Genewsky A, Wotjak CT (2017) Enhanced anandamide signaling reduces flight behavior elicited by an approaching robo‑beetle. Neuropharmacology 126: 233–241.
  • Hess WR, Brügger  M (1943) The subcortical center for affective defense reactions (in German). Helv Physiol Pharmacol Acta 1: 33–52.
  • Inman CS, Bijanki KR, Bass DI, Gross RE, Hamann S, Willie JT (2018) Human amygdala stimulation effects on emotion physiology and emotional experience. Neuropsychologia. In press. Kerr DM, Burke NN, Ford GK, Connor TJ, Harhen B, Egan LJ, Finn DP, Roche  M (2012) Pharmacological inhibition of endocannabinoid degradation modulates the expression of inflammatory mediators in the hypothalamus following an immunological stressor. Neuroscience 204: 53–63.
  • Lisboa SF, Camargo LHA, Magesto AC, Resstel LBM, Guimarães FS (2014) Cannabinoid modulation of predator fear: involvement of the dorsolateral periaqueductal gray. Int J  Neuropsychopharmacol 17: 1193–1206.
  • Luchicchi A, Pistis M (2012) Anandamide and 2‑arachidonoylglycerol: pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol Neurobiol 46: 374–392.
  • Lutz B, Marsicano G, Maldonado R, Hillard CJ (2015) The endocannabinoid system in guarding against fear, anxiety and stress. Nat Rev Neurosci 16: 705–718.
  • Marinelli S, Di Marzo V, Florenzano F, Fezza F, Viscomi MT, van der Stelt M, Bernardi G, Molinari M, Maccarrone M, Mercuri NB (2007) N‑arachidonoyl‑dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology 32: 298.
  • Milani H, Graeff FG (1987) GABA‑benzodiazepine modulation of aversion in the medial hypothalamus of the rat. Pharmacol Biochem Behav 28: 21–27.
  • Mobbs D, Marchant JL, Hassabis D, Seymour B, Tan G, Gray, M, Petrovic P, Dolan RJ, Frith CD (2009) From threat to fear: The neural organization of defensive fear systems in humans. J Neurosci 29: 12236–12243.
  • Mobbs D, Petrovic P, Marchant JL, Hassabis D, Weiskopf N, Seymour  B, Dolan RJ, Frith CD (2007) When fear is near: threat imminence elicits prefrontal‑periaqueductal gray shifts in humans. Science 317: 1079–1083.
  • Nashold BSJ, Wilson WP, Slaughter DG (1969) Sensations evoked by stimulation in the midbrain of man. J Neurosurg 30: 14–24.
  • Paschoalin‑Maurin T, dos Anjos‑Garcia T, Falconi‑Sobrinho LL, de Freitas RL, Coimbra JPC, Laure CJ, Coimbra NC (2018) The Rodent‑versus‑wild snake paradigm as a  model for studying anxiety‑ and panic‑like behaviors: face, construct and predictive validities. Neuroscience 369: 336–349.
  • Patel S, Hill MN, Cheer JF, Wotjak CT, Holmes A (2017) The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci Biobehav Rev 76: 56–66.
  • Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates (2nd Ed.), Academic Press, San Diego.
  • Prus AJ, James JR, Rosecrans JA (2009) Conditioned Place Preference. In: Methods of Behavior Analysis in Neuroscience (Buccafusco J.J. (Ed.), 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis; 2009. Chapter 4.
  • Rubino T, Realini N, Castiglioni C, Guidali C, Vigano D, Marras E, Petrosino S, Perletti G, Maccarrone M, Di Marzo V, Parolaro D (2008). Role in anxiety behavior of the endocannabinoid system in the prefrontal cortex. Cereb Cortex 18: 1292–1301.
  • Schmitt P, Di Scala G, Brandao ML, Karli P (1985) Behavioral effects of microinjections of SR 95103, a  new GABA‑A antagonist, into the medial hypothalamus or the mesencephalic central gray. Eur J Pharmacol 117: 149–158.
  • Twardowschy A, Castiblanco‑Urbina MA, Uribe‑Mariño A, Biagioni AF, Salgado‑Rohner CJ, de Souza Crippa JA, Coimbra NC (2013) The role of 5‑HT1A receptors in the anti‑aversive effects of cannabidiol on panic attack‑like behaviors evoked in the presence of the wild snake Epicrates cenchria crassus (Reptilia, Boidae). J  Psychopharmacol 27: 1149–1159.
  • Ullah F, dos Anjos‑Garcia T, Mendes‑Gomes J, Elias‑Filho DH, FalconiSobrinho LL, de Freitas RL, Khan AU, de Oliveira R, Coimbra NC (2017) Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic‑like behaviour. Behav Brain Res 319: 135–147.
  • Ullah F, dos Anjos‑Garcia T, dos Santos IR, Biagioni AF, Coimbra NC (2015) Relevance of dorsomedial hypothalamus, dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal gray matter in the organization of freezing or oriented and non‑oriented escape emotional behaviors. Behav Brain Res 293: 143–152.
  • Uribe‑Mariño A, Francisco A, Castiblanco‑Urbina MA, Twardowschy A, Salgado‑Rohner CJ, Crippa JAS, Hallak JEC, Zuardi AW, Coimbra NC (2012) Anti‑aversive effects of cannabidiol on innate fear‑induced behaviors evoked by an ethological model of panic attacks based on a  prey vs. the wild snake Epicrates cenchria crassus confrontation paradigm. Neuropsychofarmacology 37: 412–421.
  • Viana TG, Bastos JR, Costa RB, Hott SC, Mansur FS, Coimbra CC, Resstel LB, Aguiar DC, Moreira FA (2019) Hypothalamic endocannabinoid signalling modulates aversive responses related to panic attacks. Neuropharmacology 148: 284–290.
  • Wilent WB, Oh MY, Buetefisch CM, Bailes JE, Cantella D, Angle C, Whiting DM (2010) Induction of panic attack by stimulation of the ventromedial hypothalamus. J Neurosurg 112: 1295–1298.
  • Zarrindast MR, Sarahroodi S, Arzi A, Khodayar MJ, Taheri‑Shalmani S, Rezayof A (2008) Cannabinoid CB1 receptors of the rat central amygdala mediate anxiety‑like behavior: interaction with the opioid system. Behav Pharmacol 19: 716–723.
  • Zuardi AW, Rodrigues NP, Silva AL, Bernardo SA, Hallak JEC, Guimarães FS, Crippa JAS (2017) Inverted U‑shaped dose‑response curve of the anxiolytic effect of cannabidiol during public speaking in real life. Front Pharmacol 8: 259.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a2b6cc80-9308-4f9d-a163-e6d0964841b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.