PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 2 |
Tytuł artykułu

Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from environment. Using two brassica species (Brassica juncea and Brassica napus), nutrient solution experiments were conducted to study variation in tolerance to cadmium (Cd) toxicity based on (1) lipid peroxidation and (2) changes in antioxidative defense system in leaves of both plants (i.e., superoxide dismutase (SOD EC 1.15.1.1), catalase (CAT EC 1.11.1.6), ascorbate peroxidase (APX EC 1.11.1.11), guaiacol peroxidase (GPX EC 1.11.1.7), glutathione reductase (GR EC 1.6.4.2), levels of phytochelatins (PCs), non-protein thiols (NP-SH), and glutathione. Plants were grown in nutrient solution under controlled environmental conditions, and subjected to increasing concentrations of Cd (0, 10, 25 and 50 µM) for 15 days. Results showed marked differences between both species. Brassica napus under Cd stress exhibited increased level of lipid peroxidation, as was evidenced by the increased malondialdehyde (MDA) content in leaves. However, in Brassica juncea treated plants, MDA content remained unchanged. In Brassica napus, with the exception of GPX, activity levels of some antioxidant enzymes involved in detoxification of reactive oxygen species (ROS), including SOD, CAT, GR, and APX, decreased drastically at high Cd concentrations. By contrast, in leaves of Brassica juncea treated plants, there was either only slight or no change in the activities of the antioxidative enzymes. Analysis of the profile of anionic isoenzymes of GPX revealed qualitative changes occurring during Cd exposure for both species. Moreover, levels of NP-SH and PCs, monitored as metal detoxifying responses, were much increased in leaves of Brassica juncea by increasing Cd supply, but did not change in Brassica napus. These results indicate that Brassica juncea plants possess the greater potential for Cd accumulation and tolerance than Brassica napus.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
31
Numer
2
Opis fizyczny
p.237-247,fig.,ref.
Twórcy
autor
  • Labaratorie Caracterisation et Qualite de l'Huile d'Olive, Centre de Biotechnologie, Technopole de Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
autor
  • Unite Nutrition et Metabolisme Azotes et Proteines de Stress, Departement des Sciences Biologiques, Faculte des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia
  • Labaratorie Caracterisation et Qualite de l'Huile d'Olive, Centre de Biotechnologie, Technopole de Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
  • Labaratorie Caracterisation et Qualite de l'Huile d'Olive, Centre de Biotechnologie, Technopole de Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
  • Unite Nutrition et Metabolisme Azotes et Proteines de Stress, Departement des Sciences Biologiques, Faculte des Sciences de Tunis, Campus Universitaire, 1060 Tunis, Tunisia
autor
  • Labaratorie Caracterisation et Qualite de l'Huile d'Olive, Centre de Biotechnologie, Technopole de Borj-Cedria, B.P. 901, 2050 Hammam-Lif, Tunisia
Bibliografia
  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants. CRC Press, Boca Raton, FL, pp 77–104
  • Bañuelos GS, Meek DW (1990) Accumulation of selenium in plants grown on selenium-treated soil. J Environ Qual 19:772–777
  • Ben Youssef N, Nouairi I, Temime SB, Taamalli W, Zarrouk M, Ghorbal MH et al (2005) Cadmium effects on lipid metabolism of rape (Brassica napus L.). C R Biol 328:745–757. doi: 10.1016/j.crvi.2005.05.010
  • Bhargava P, Srivastava AK, Urmil S, Rai LC (2005) Phytochelatin plays a role in UV-B tolerance in N2-fixing cyanobacterium Anabaena doliolum. J Plant Physiol 162:1220–1225. doi: 10.1016/j.jplph.2004.12.006
  • Birecka H, Garraway MO (1978) Corn leaf isoperoxidase reaction to mechanical injury and infection with Helminthosporium maydis. Effects of cycloheximide. Plant Physiol 61:561–566
  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167. doi: 10.1002/bit.10656
  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Cakmak I (2000) Role of zinc in protecting plant cells from reactive oxygen species. New Phytol 146:185–205. doi:10.1046/j.1469-8137.2000.00630.x
  • Cakmak I, Horst WJ (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Castillo FJ (1986) Extracellular peroxidases as markers of stress? In: Greppin H, Penel C, Gaspar T (eds) Molecular and physiological aspects of plant peroxidases. University of Geneva Press, Geneva, pp 419–426
  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486. doi:10.1007/s004250000458
  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Physiol Plant Mol Biol 53:159–182. doi:10.1146/annurev.arplant.53.100301.135154
  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832. doi:10.1104/pp.123. 3.825
  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775. doi:10.1093/jxb/eri062
  • Chaoui A, Mazhoudi S, Ghorbal MH, El Ferjani E (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzymes activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147. doi:10.1016/S0168-9452(97) 00115-5
  • Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120. doi:10.1016/j.plantsci.2004.07.021
  • Davis RD (1984) Cadmium—a complex environmental problem: cadmium in sludge used as fertilizer. Experientia 40:117–126. doi:10.1007/BF01963574
  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257. doi:10.1016/j.envexpbot.2004.03.017
  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109. doi:10.1093/jexbot/52. 358.1101
  • Dong J, Wu FB, Zhang GP (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666. doi:10.1016/j.chemosphere.2006.01.030
  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6
  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydron peroxide and glutathione associated mechanism of acclamatory stress tolerance and signaling. Physiol Plant 100:241–254. doi: 10.1111/j.1399-3054.1997.tb04780.x
  • Gupta M, Tripathi RD, Rai UN, Chandra P (1998) Role of glutathione and phytochelatin in Hydrilla verticillata Royle and Valliseria spiralis L. under mercury stress. Chemosphere 37:785–800. doi: 10.1016/S0045-6535(98)00073-3
  • Gupta M, Tripathi RD, Rai UN, Haq W (1999) Lead induced synthesis of metal binding peptides (phytochelatins) in submerged macrophyte Vallisneria spiralis L. Physiol Mol Biol Plants 5:173–180
  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1
  • Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139:9–17. doi:10.1007/BF00390803
  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn edn. Clarendon Press, Oxford, UK, pp 110–119
  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198. doi:10.1016/0003-9861(68) 90654-1
  • Hegedus A, Erdei S, Horvath G (2001) Comparative studies of H₂O₂ detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093. doi:10.1016/ S0168-9452(01)00330-2
  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839. doi:10.1093/jxb/erg205
  • Heyes RB (1997) The carcinogenicity of metals in humans. Cancer Causes Control 8:371–385. doi:10.1023/A:1018457305212
  • Hissin PJ, Hilf R (1976) A fluorimetric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. doi:10.1016/0003-2697(76)90326-2
  • Howlett NG, Avery SV (1997) Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Appl Environ Microbiol 63:2971–2976
  • Jackson PJ, Delhaize E, Kuske CR (1992) Biosynthesis and metabolic roles of cadystins (γ-EC)n-G and their precursors in Datura innoxia. Plant Soil 146:281–289. doi:10.1007/BF00012022
  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Ha`la`csy. Plant Physiol 115:1641–1650
  • Kufel I (1991) Lead and molybdenum in reed and cattail—open versus closed type of metal cycling. Aquat Bot 40:275–288. doi: 10.1016/0304-3770(91)90063-B
  • Kumar PBA, Dushenkov V, Motto J, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238. doi:10.1021/es00005a014
  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentaion of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84. doi:10.1007/s004250000366
  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0
  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978. doi:10.1016/0031-9422(88)80254-1
  • Larsson EH, Bornman JF, Asp H (1998) Influence of UV-B radiation and Cd²⁺ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp Bot 49:1031–1039. doi: 10.1093/jexbot/49.323.1031
  • Li L, He Z, Pandey GK, Tsuchiya T, Luan S (2002) Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification. J Biol Chem 277:5360–5368. doi:10.1074/jbc.M108777200
  • Lin R, Xiaorong W, Yi L, Wenchao D, Hongyan G, Daqiang Y (2007) Effects of soil cadmiumon growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere 69:89–98. doi:10.1016/j.chemosphere.2007.04.041
  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736. doi:10.1007/s00425-004-1392-5
  • Mazhoudi S, Chaoui A, Ghorbal MH, Ferjani EF (1997) Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum L. Mill). Plant Sci 127:129–137. doi:10.1016/S0168-9452(97)00116-7
  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049–6055
  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214. doi:10.1023/A:1010358708525
  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37. doi:10.1016/j.plaphy.2006.01.007
  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140
  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279. doi:10.1146/annurev.arplant.49.1.249
  • Nouairi I, Ben Ammar W, Ben Youssef N, Douja Daoud BM, Ghorbel MH, Zarrouk M (2006a) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170:511–519. doi: 10.1016/j.plantsci.2005.10.003
  • Nouairi I, Ghnaya T, Ben Youssef N, Zarrouk M, Ghorbel MH (2006b) Changes in content and fatty acid profiles of total lipids of two halophytes: Sesuvium portuacastrum and Mesembryanthenum crystalinum under cadmium stress. J Plant Physiol 163:1198–1202. doi:10.1016/j.jplph.2005.08.020
  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium- and copper-induced changes in tomato membrane lipids. Phytochem 7:1343–1350. doi:10.1016/S0031-9422(97) 00159-3
  • Pawlik-Skowronska B (2002) Correlations between toxic Pb effects and production of Pb-induced thiol peptides in the microalga Stichococcus bacillaris. Environ Pollut 119:119–127. doi: 10.1016/S0269-7491(01)00280-9
  • Prasad MNV (1995) Cadmium toxicity and tolerance in higher plants. Environ Exp Bot 35:525–545. doi:10.1016/0098-8472(95)00024-0
  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181. doi:10.1016/j.plantsci.2004.06.018
  • Radotic K, Ducic T, Mutavdzic D (2000) Changes in peroxidase activity and sisozymes in spruce needles after exposure to different concentrations of cadmium. Environ Exp Bot 44:105–113. doi:10.1016/S0098-8472(00)00059-9
  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226. doi:10.1016/S0958-1669(97)80106-1
  • Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 32:19–48. doi:10.1007/BF02738153
  • Salt DE, Smith R, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668. doi:10.1146/annurev. arplant.49.1.643
  • Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301
  • Sandalio LM, Dalurzo HC, Gómez M, Romero-Puertas MC, Del Río LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126
  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6
  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898. doi:10.1104/pp.127.3.887
  • Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laere A et al (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43:437–444. doi:10.1016/j.plaphy.2005.03.007
  • Speiser DM, Abrahamson SL, Banuoelos G, Ow DW (1992) Brassica juncea produces a phtyochelatin–cadmium–sulfide complex. Plant Physiol 99:817–821
  • Srivastava S, Tripathi RD, Dwivedi UN (2004) Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Physiol 161:665–674. doi:10.1078/0176-1617-01274
  • Świergosz-Kowalewska R, Bednarska A, Kafel A (2006) Glutathione levels and enzyme activity in the tissues of bank vole Clethrionomys glareolus chronically exposed to a mixture of metal contaminants. Chemosphere 65:963–974. doi:10.1016/j.chemosphere.2006.03.040
  • Tripathi RD, Rai UN, Gupta M, Chandra P (1996) Induction of phytochelatins in Hydrilla verticillata (l.f.) Royle under cadmium stress. Bull Environ Contam Toxicol 56:505–512. doi: 10.1007/s001289900073
  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol 92:1086–1093
  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30. doi:10.1016/S0378-1119(96)00422-2
Uwagi
Rekord w opracowaniu
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-a2aa76f0-0fb1-4aeb-9132-c36bb2d033c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.