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Summary
In the problem of comparison of two probabilities of success the most widely used test is
approximate test based on de Moivre-Laplace theorem. In Jaworski and Zieliński (2017)
a new test based on the likelihood ratio was proposed. In this paper those tests are com-
pared due to their power.
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1. Introduction

Let ξ1 ∼ Bin(n1, θ1) and ξ2 ∼ Bin(n2, θ2) be independent random variables. Let
ϑ = θ1 − θ2. Consider a problem of testing

H : ϑ = 0 vs K : ϑ > 0. (H)

Statistical model for (ξ1, ξ2) is

(X , {Bin(n1, θ1)×Bin(n2, θ2), 0 < θ1, θ2 < 1}) ,

where X = {0, 1, . . . , n1} × {0, 1, . . . , n2}. Since the difference ϑ = θ1 − θ2 is a
parameter of interest the model is reparametrized

(X , {Bin(n1, θ1)×Bin(n2, θ1 − ϑ),−1 < ϑ < 1, a(ϑ) < θ1 < b(ϑ)}) ,
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where
a(ϑ) = max{0, ϑ}, b(ϑ) = min{1, 1 + ϑ}.

Let l(ϑ) = b(ϑ)− a(ϑ) = 1− |ϑ|.
In the problem (H) the probability θ1 is a nuisance parameter. It will be eliminated
by appropriate averaging. Hence the statistical model under consideration has the
form

(X , {Pϑ,−1 < ϑ < 1}) ,
where

Pϑ(k1, k2) =
1

l(ϑ)

∫ b(ϑ)

a(ϑ)

bin(n1, k1; θ1)bin(n2, k2; θ1 − ϑ)dθ1,

bin(m, l; q) =

(
m

l

)
ql(1− q)m−l, for l = 0, 1, . . . ,m.

Let
ϑ̂w =

ξ1

n1

− ξ2

n2

be the estimator of ϑ.
Note that, if verified hypothesis is true then

P0(k1, k2) =

∫ 1

0

bin(n1, k1, θ)bin(n2, k2, θ)dθ =
1

n1 + n2 + 1

(
n1

k1

)(
n2

k2

)(
n1+n2

k1+k2

) .
2. Classical test for large sample sizes

The test is based on the statistic (see https:// online courses.science.psu.edu/stat414/node/268
for example)

W (ξ1, ξ2) =
ξ1/n1 − ξ2/n2√

ξ1+ξ2
n1+n2

(
1− ξ1+ξ2

n1+n2

)(
1
n1

+ 1
n2

) .
This test is based on the normal approximation of the distribution of ϑ̂w. Let
w∗ = W (k1, k2) be observed value of W (ξ1, ξ2) and let

levW (ϑ; k1, k2) = Pϑ {W (ξ1, ξ2) > w∗} .

Hypothesis H is rejected if levW (0, k1, k2) < α, where α is assumed significance
level.
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3. Test based on likelihood ratio

The test is based on the likelihood ratio

Λ(ξ1, ξ2) =
supϑ>0 Pϑ(ξ1, ξ2)

P0(ξ1, ξ2)
.

Let Λ∗ = Λ(k1, k2) be observed value of Λ(ξ1, ξ2) and let

levΛ(ϑ; k1, k2) = Pϑ {Λ(ξ1, ξ2) > Λ∗} .

Hypothesis H is rejected if levΛ(0; k1, k2) < α.

4. Power comparison

Jaworski and Zieliński (2017) showed that Λ test is more effective than classical
one, i.e. its expected value of the probability of non rejecting true hypothesis is
greater. In what follows power of Λ test will be compared with the power of the
classical test. Let

povΛ(ϑ; k1, k2) =
levΛ(ϑ; k1, k2)

levΛ(0; k1, k2)
.

This is a measure of relative, with respect to the probability of rejecting true hy-
pothesis H , power of the test Λ.
Similarly we define

povW (ϑ; k1, k2) =
levW (ϑ; k1, k2)

levW (0; k1, k2)
.

For comparison of Λ and W test the ratio

r(ϑ) = Eϑ

(
povΛ(ϑ; ξ1, ξ2)

povW (ϑ; ξ1, ξ2)

)
is applied. Values of r(ϑ) greater than one inform that the test Λ is more powerful
that the W test.
The indicator r(ϑ) is calculated for ϑ ∈ {0.1, 0.2, . . . , 0.9} and sample sizes
n1, n2 ∈ {5, 10, 15, 25, 30} (Figure 1) or n1, n2 ∈ {70, 75, 80, 90, 100} (Figure
2). It may be concluded from the Figures that for samples n1 = n2 ≤ 30 the Λ
test is more powerful then the W test for small ϑ. In other cases it is seen that
r(ϑ) ≥ 1. So it follows that Λ test dominates W test except the case of small
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Figure 1. r(ϑ) for ϑ ∈ 〈0, 0.9〉 and n1, n2 ∈ {5, 10, 20, 15, 25, 30}

and equal sample sizes and large differences between binomial proportions. Note
the dominance is increasing with n1 and n2 (For fixed ϑ we have greater r(ϑ) for
larger sample sizes). For n1 = n2 ≥ 70 (compare first panels of Figure 1 and
Figure 2), for example, there is no advantage of W over Λ for every ϑ ∈ 〈0, 0.9〉.

5. Final remarks

In the paper a test Λ based on likelihood ratio is compared with the known approx-
imate test W with respect to their relative powers. The proposed Λ test is better
thanW test in the sense of greater probability of non rejecting true hypothesis (see
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Figure 2. r(ϑ) for ϑ ∈ 〈0, 0.9〉 and n1, n2 ∈ {70, 75, 80, 90, 100}

Jaworski and Zieliński (2017)). Our calculations showed that except some cases
of equal sample sizes the test Λ is more powerful too. So it can be recommended
for use in practise, although it is not a uniformly most powerful test.

In statistical hypothesis testing a uniformly most powerful test is a hypothesis
test which has the greatest power among all possible tests of a given size (see
Bartoszewicz (1989) or Lehmann (1959) for the general theory of uniformly
most powerful tests). In the paper the test Λ is actually compared only with one
test, namely the classical W test. Since Pϑ is a probability mass function but
not a density function we compare the tests with respect to their relative power.
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Assuming that, after observing {ξ1 = k1, ξ2 = k2}, levΛ(ϑ; k1, k2) < α holds,
povΛ(ϑ; k1, k2) measures how many times the probability of rejecting hypothesis
by the Λ test is as likely when the hypothesis is false as when it is true. On the
other side if levΛ(ϑ; k1, k2) ≥ α then povΛ(ϑ; k1, k2) measures how the test is
close to rejecting false hypothesis. Hence r(ϑ), a relative power averaged with
respect to probability measure Pϑ, should properly reflect willingness of the Λ
test to reject false hypothesis.
Hypothesis testing, although it is a very useful approach in certain contexts, has
some limitations. It gives evidence against the null hypothesis but does not indi-
cate which of a family of alternatives is best supported by the data. For this reason
the use of confidence intervals if possible is preferable. The reader interested in
the relationship between hypotheses testing and confidence intervals is referred
to Hirji (2006), where a unified and application-oriented framework, the distri-
butional theory, statistical methods and computational methods for exact analysis
of discrete data are presented. Newcombe (1998) investigated properties of con-
fidence intervals for difference between probabilities of success in the classical
statistical model, while Zieliński (2017) and Zieliński (2018) constructed the
confidence interval in the setup considered in the current paper.
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