PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 05 |

Tytuł artykułu

Identification and localized expression of putative Kplus/Hplus antiporter genes in Arabidopsis

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The functions of the Arabidopsis K+/H+ antiporters (KEA) have only been partially determined, and further assessments of their biological roles are needed. In this report, we provide localization and expression analyses of six members of the KEA gene family in Arabidopsis. Promoter-driven β-glucuronidase activity analyses in transgenic Arabidopsis revealed that all KEAs were detected in the vascular tissues of the plants. In the roots, AtKEA2, 4, 5, and 6 were mainly localized to the steles; in addition, AtKEA4 was also found in the root tips. In the leaves, AtKEA1, 2, and 3 were localized to the leaf veins and petioles, whereas AtKEA4, 5, and 6 were preferentially localized to the trichomes. Furthermore, AtKEA1, 2, 3, 4, and 5 were expressed in the guard cells, but AtKEA6 was not. In the florescent organs, all six AtKEA genes were detected in the sepals; interestingly, AtKEA1 was the only member found in the pollen grains. In accordance with promoter localization, quantitative RT-PCR analyses indicated that AtKEA1 and AtKEA3 were mainly expressed in the shoots, whereas AtKEA2, 4, 5, and 6 were expressed in the entire plant. The expression levels of AtKEA transcripts were affected by K+ deficiency and NaCl or osmotic stress Additionally, AtKEAs were regulated by 2,4- dichlorophenoxyacetic acid, benzyladenine, and sucrose. These results provide important information that will support future research on the function and localization of the putative K+/H+ antiporters in Arabidopsis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

05

Opis fizyczny

art.101,fig.,ref.

Twórcy

autor
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
  • Graduate School of Chinese Academy of Science, Bejing 100081, China
autor
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
  • College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
autor
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
  • Graduate School of Chinese Academy of Science, Bejing 100081, China
autor
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
autor
  • State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China

Bibliografia

  • An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC (2007) AtNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li/H antiporter. Plant J 49(4):718–728. doi:10.1111/j.1365-313X.2006.02990.x
  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285(5431):1256–1258. doi:10. 1126/science.285.5431.1256
  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36(2):229–239. doi:10.1046/j.1365-313X.2003.01871.x
  • Aranda-Sicilia MN, Cagnac O, Chanroj S, Sze H, Rodriguez-Rosales MP, Venema K (2012) Arabidopsis KEA2, a homolog of bacterial KefC, encodes a K(+)/H(+) antiporter with a chloroplast transit peptide. Biochim Biophys Acta (pii:S0005-2736(12)00133-2)
  • Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM (2012) Ion Exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell. doi:10.1105/tpc.111.095273
  • Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E (2011a) The Arabidopsisintracellular Na+/H+ antiporters NHX5 and NHX6 Are endosome associated and necessary for plant growth and development. Plant Cell 23(1):224–239. doi:10.1105/tpc.110.079426
  • Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011b) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23(9):3482–3497. doi:10.1105/tpc.111.089581
  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61. doi:10.1038/nrm2820
  • Cellier F, Conejero G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39(6):834–846. doi:10.1111/j.1365-313X.2004.02177.x
  • Chanroj S, Lu Y, Padmanaban S, Nanatani K, Uozumi N, Rao R, Sze H (2011) Plant-specific cation/H+ exchanger 17 and its homologs are endomembrane K+ transporters with roles in protein sorting. J Biol Chem 286(39):33931–33941. doi:10.1074/jbc.M111.252650M111.252650
  • Chanroj S, Wang G, Venema K, Zhang MW, Delwiche CF, Sze H (2012) Conserved and diversified gene families of monovalent cation/H(+) antiporters from algae to flowering plants. Front Plant Sci 3:25. doi:10.3389/fpls.2012.00025
  • Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H (2013) K+ transporter AtCHX17 with its hydrophilic C tail localizes to dynamic membranes of the secretory/endocytic system: role in reproduction and seed set. Mol Plant. doi:10.1093/mp/sst032
  • Chiou TJ, Bush DR (1997) Effect of chlorsulfuron on sucrose transport in leaf discs and plasma membrane vesicles isolated from sugar beet leaves. Plant Physiol 114(3):956
  • Chmielowska-Bak J, Izbianska K, Deckert J (2013) The toxic Doppelganger: on the ionic and molecular mimicry of cadmium. Acta Biochim Pol 60(3):369–374
  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743
  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216(2):334–344. doi:10.1007/s00425-002-0895-1
  • Detlef Weigel JG (ed) (2002) Arabidopsis: a laboratory manual. Whole-mount GUS staining. Cold Spring Harbor Laboratory Press. New York
  • Douglas RM, Roberts JA, Munro AW, Ritchie GY, Lamb AJ, Booth IR (1991) The distribution of homologues of the Escherichia coli KefC K(+)-efflux system in other bacterial species. J Gen Microbiol 137(8):1999–2005
  • Douglas RM, Ritchie GY, Munro AW, Mclaggan D, Booth IR (1994) The K+-efflux system, Kefc, in Escherichia-Coli—geneticevidence for oligomeric structure. Mol Membr Biol 11(1):55–61
  • Ferguson GP, Mclaggan D, Booth IR (1995) Potassium channel activation by glutathione-S-conjugates in Escherichia-Coli—protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 17(6):1025–1033. doi:10.1111/j.1365-2958.1995.mmi_17061025.x
  • Fuchs I, Philippar K, Hedrich R (2006) Ion channels meet auxin action. Plant Biol (Stuttg) 8(3):353–359. doi:10.1055/s-2006-924121
  • Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96(4):1480–1485. doi:10.1073/pnas.96.4.1480
  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581(12):2204–2214 (pii:S0014-5793(07)00322-5)
  • Gierth M, Maser P (2007) Potassium transporters in plants—involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356 (pii:S0014-5793(07)00301-8)
  • Kuhn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13(3):287–298. doi:10.1016/j.pbi.2010.02.001
  • Kunz HH, Gierth M, Herdean A, Satoh-Cruz M, Kramer DM, Spetea C, Schroeder JI (2014) Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci USA. doi:10.1073/pnas.1323899111
  • Lemoine R, La Camera S, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thevenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272.doi:10.3389/fpls.2013.00272
  • Liu H, Tang RJ, Zhang Y, Wang CT, Lv QD, Gao XS, Li WB, Zhang HX (2010) AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana. Plant, Cell Environ 33(11):1989–1999. doi:10.1111/j.1365-3040.2010.02200.x
  • Maresova L, Sychrova H (2005) Physiological characterization of Saccharomyces cerevisiae kha1 deletion mutants. Mol Microbiol 55(2):588–600. doi:10.1111/j.1365-2958.2004.04410.x
  • Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667.doi:10.1104/pp.126.4.1646
  • Miller S, Ness LS, Wood CM, Fox BC, Booth IR (2000) Identification of an ancillary protein, YabF, required for activity of the KefC glutathione-gated potassium efflux system in Escherichia coli. J Bacteriol 182(22):6536–6540
  • Munro AW, Ritchie GY, Lamb AJ, Douglas RM, Booth IR (1991) The cloning and DNA-sequence of the gene for the glutathioneregulated potassium-efflux system Kefc of Escherichia-Coli. Mol Microbiol 5(3):607–616. doi:10.1111/j.1365-2958.1991.tb00731.x
  • Ness LS, Booth IR (1999) Different foci for the regulation of the activity of the KefB and KefC glutathione-gated K+ efflux systems. J Biol Chem 274(14):9524–9530. doi:10.1074/jbc.274. 14.9524
  • Padmanaban S, Chanroj S, Kwak JM, Li X, Ward JM, Sze H (2007) Participation of endomembrane cation/H+ exchanger AtCHX20 in osmoregulation of guard cells. Plant Physiol 144(1):82–93. doi:10.1104/pp.106.092155
  • Philippar K, Ivashikina N, Ache P, Christian M, Luthen H, Palme K, Hedrich R (2004) Auxin activates KAT1 and KAT2, two K+- channel genes expressed in seedlings of Arabidopsis thaliana. Plant J 37(6):815–827. doi:10.1111/j.1365-313X.2003.02006.x
  • Philippar K, Buchsenschutz K, Edwards D, Loffler J, Luthen H, Kranz E, Edwards KJ, Hedrich R (2006) The auxin-induced K+ channel gene Zmk1 in maize functions in coleoptile growth and is required for embryo development. Plant Mol Biol 61(4–5):757–768. doi:10.1007/s11103-006-0047-2
  • Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51(5):773–787
  • Pittman JK (2012) Multiple transport pathways for mediating intracellular pH homeostasis: the contribution of H(+)/ion exchangers. Front Plant Sci 3:11. doi:10.3389/fpls.2012.00011
  • Roosild TP, Miller S, Booth IR, Choe S (2002) A mechanism of regulating transmembrane potassium flux through a ligandmediated conformational switch. Cell 109(6):781–791. doi:10.1016/S0092-8674(02)00768-7
  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69. doi:10.1146/annurev. arplant.58.032806.103750
  • Shi H, Zhu JK (2002) Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol Biol 50(3):543–550
  • Shi HZ, Ishitani M, Kim CS, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H? Antiporter. P Natl Acad Sci USA 97(12):6896–6901. doi:10.1073/pnas. 120170197
  • Sze H, Padmanaban S, Cellier F, Honys D, Cheng NH, Bock KW, Conejero G, Li X, Twell D, Ward JM, Hirschi KD (2004) Expression patterns of a novel AtCHX gene family highlight potential roles in osmotic adjustment and K+ homeostasis in pollen development. Plant Physiol 136(1):2532–2547. doi:10.1104/pp.104.046003
  • Szymanski DB, Marks MD (1998) GLABROUS1 overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell 10(12):2047–2062
  • Vaughn MW, Harrington GN, Bush DR (2002) Sucrose-mediated transcriptional regulation of sucrose symporter activity in the phloem. Proc Natl Acad Sci USA 99(16):10876–10880. doi:10. 1073/pnas.172198599
  • Wang Y, Wu WH (2010) Plant sensing and signaling in response to K+-deficiency. Mol Plant 3(2):280–287. doi:10.1093/Mp/Ssq006
  • Ward JM, Maser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82. doi:10.1146/annurev.physiol.010908.163204
  • Winterbourn CC (2013) The biological chemistry of hydrogen peroxide. Methods Enzymol 528:3–25. doi:10.1016/B978-0-12-405881-1.00001-X
  • Ye CY, Yang X, Xia X, Yin W (2013) Comparative analysis of cation/proton antiporter superfamily in plants. Gene 521(2):245–251. doi:10.1016/j.gene.2013.03.104
  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30(5):529–539. doi:10.1046/j.1365-313X.2002.01309.x
  • Zhao J, Cheng NH, Motes CM, Blancaflor EB, Moore M, Gonzales N, Padmanaban S, Sze H, Ward JM, Hirschi KD (2008) AtCHX13 is a plasma membrane K+ transporter. Plant Physiol 148(2): 796–807. doi:10.1104/pp.108.124248
  • Zheng S, Pan T, Fan LG, Qiu QS (2013) A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis. Plos One 8(11). doi:10.1371/journal.pone.0081463
  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273. doi:10.1146/annurev.arplant. 53.091401.143329
  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445. doi:10.1016/S1369-5266(03)00085-2
  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10(7):1181–1191

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a1df6c4f-897a-48a0-8a9e-2ff212794a73
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.