PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 69 | 2 |

Tytuł artykułu

Effect of thermal processing on simultaneous formation of acrylamide and hydroxymethylfurfural in plum puree

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The formation of acrylamide (ACR) and hydroxymethylfurfural (HMF) at different time and temperature combination in plum purée derived from two species was investigated. An optimized method for reducing ACR and HMF formation in thermally-treated plum purée was developed using a Central Composite Design model. Precursors of contaminants and their in uence on the heating of plum purée were evaluated as well. The contaminants content was determined in thirteen running variants in the temperature range of 59.3ļ200.7°C, and heating time between 5.9 and 34.1 min. The model allowed establishing that the lowest ACR content was reached at 5.9-min exposure time and 130°C temperature, for both plum species (3.91 g/kg and 8.73 g/kg for Prunus cerasifera (P1) and Prunus domestica (P2), respectively). The lowest quantity of HMF was found at 20-min exposure time and 59.3°C temperature for both plum species (0.25 mg/kg and 0.18 mg/kg for P1 and P2, respectively). The results obtained allowed predicting the ACR/HMF levels in plum purée at different heating conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

2

Opis fizyczny

p.179-189,fig.,ref.

Twórcy

  • Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201, Galati, Romania
autor
  • Department of Chemistry and Food Analysis, VUP Food Research Institute, National Agricultural and Food Centre, Priemyslena 4, 824 75 Bratislava, Slovakia
autor
  • Department of Chemistry and Food Analysis, VUP Food Research Institute, National Agricultural and Food Centre, Priemyslena 4, 824 75 Bratislava, Slovakia
autor
  • Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201, Galati, Romania
autor
  • Department of Chemistry and Food Analysis, VUP Food Research Institute, National Agricultural and Food Centre, Priemyslena 4, 824 75 Bratislava, Slovakia
autor
  • Academy of Agricultural and Forestry Sciences, 61 Marasti Blvd, 011464 Bucharest, Romania
autor
  • Integrated Center for Research, Expertise and Technological Transfer in Food Industry, Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, 111 Domneasca Street, 800201, Galati, Romania

Bibliografia

  • 1. Abraham, K., Gürtler, R., Berg, K., Heinemeyer, G., Lampen, A., Appel, K.E. (2011). Toxicology and risk assessment of 5-hydroxymethylfurfural in food. Molecular Nutrition & Food Research, 55(5), 667-678.
  • 2. Amrein, T.M., Andres, L., Escher, F., Amadò, R. (2007). Occurrence of acrylamide in selected foods and mitigation options. Food Additives & Contaminants, 24(suppl.), 13-25.
  • 3. Antal, M.J., Mok, W.S., Richards, G.N. (1990). Kinetic studies of the reactions of ketoses and aldoses in water at high-temperature. 1. Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from D-fructose and sucrose. Carbohydrate Research 199(1), 91-109.
  • 4. AOAC: Of cial Methods of Analysis of the AOAC International (1995). 16th ed. Method 970.12. Association of Of cial Analytical Chemists International. Washington, DC, USA.
  • 5. Becalski, A., Brady, B., Feng, S., Gauthier, B.R., Zhao, T. (2011). Formation of acrylamide at temperatures lower than 100°C: the case of prunes and a model study. Food Additives & Contaminants: Part A, 28(6), 726-730.
  • 6. Becalski, A., Lau, B.P.Y., Lewis, D., Seaman, S.W. (2003). Acrylamide in foods: Occurrence, sources, and modeling. Journal of Agricultural and Food Chemistry, 51(3), 802-808.
  • 7. Birwal, P., Deshmukh, G., Saurabh, S.P., Pragati, S. (2017). Plums: a brief introduction. Journal of Food Nutrition and Population Health, 1, 1-5.
  • 8. Blank, I., Robert, F., Goldmann, T., Pollien, P., Varga, N., Devaud, S., Saucy, F., Huynh-Ba, T., Stadler, R.H. (2005). Mechanisms of acrylamide formation Maillard-induced transformation of asparagine. In M. Friedman, D. Mottram (eds.), Chemistry and Safety of Acrylamide in Food, Springer Science + Business Media, Inc., New York, USA, pp. 171-189.
  • 9. Capuano, E., Fogliano, V. (2011). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Science and Technology, 44(4), 793-810.
  • 10. Ciesarová, Z., Kukurová, K., Bednáriková, A., Morales, F.J. (2009). Effect of heat treatment and dough formulation on the formation of Maillard reaction products in ne bakery products-bene ts and weak points. Journal of Food and Nutrition Research, 48(1), 20-30
  • 11. Claus, A., Weisz, G.M., Schieber, A., Carle, R. (2006). Pyrolytic acrylamide formation from puri ed wheat gluten and gluten-supplemented wheat bread rolls. Molecular Nutrition & Food Research, 50(1) 87-93.
  • 12. Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food (Text with EEA relevance) Of cial Journal of the European Union L 304/24. [https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32017R2158&from=EN]. (accessed 01.05.2018).
  • 13. Constantin, O.E., Kukurová, K., Neagu, C., Bednáriková, A., Ciesarová, Z., Râpeanu, G. (2014). Modelling of acrylamide formation in thermally treated red bell peppers (Capsicum annuum L.). European Food Research and Technology, 238(1), 149-156.
  • 14. Daniali, G., Jinap, S., Hanifah, N.L., Hajeb, P. (2013). The effect of maturity stages of banana on the formation of acrylamide in banana fritters. Food Control, 32(2), 386-391.
  • 15. De Paola, E.L., Montevecchi, G., Masino, F., Garbini, D., Barbanera, M., Antonelli, A. (2017). Determination of acrylamide in dried fruits and edible seeds using QuEChERS extraction and LC separation with MS detection. Food Chemistry, 217, 191-195.
  • 16. Friedman, M. (1996). Food browning and its prevention: an overview. Journal of Agricultural and Food Chemistry, 44(3), 631-653.
  • 17. Glatt, H.R., Sommer, Y. (2006). Health risks by 5-hydroxymethylfurfural (HMF) and related compounds. In K. Skog, J. Alexander (eds.), Acrylamide and Other Hazardous Compounds in Heat-Treated Foods, Woodhead Publishing, Cambridge, UK, pp. 328-357.
  • 18. Gökmen, V. (2015). Introduction: potential safety risks associated with thermal processing of foods. In V. Gökmen (ed.), Acrylamide in Food: Analysis, Content and Potential Health Effects, Academic Press, Amsterdam, Netherlands, pp. xxi- xxvi.
  • 19. Gökmen, V., Açar, Ö.C., Serpen, A., Morales, F.J. (2008). Effect of leavening agents and sugars on the formation of hydroxymethylfurfural in cookies during baking. European Food Research and Technology, 226(5), 1031-1037.
  • 20. Granvogl, M., Schieberle, P. (2006). Thermally generated 3-aminopropionamide as a transient intermediate in the formation of acrylamide. Journal of Agricultural and Food Chemistry, 54(16), 5933-5938.
  • 21. Kavousi, P., Mirhosseini, H., Ghazali, H., Arif n, A.A. (2015). Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition. Food Chemistry, 182, 164-170.
  • 22. Kocada l , T., Göncüo lu, N., Hamzal o lu, A., Gökmen, V. (2012). In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation. Food & Function, 3(9), 970-975.
  • 23. Koutsidis, G., Simons, S.P., Thong, Y.H., Haldoupis, Y., Mojica-Lazaro, J., Wedzicha, B.L., Mottram, D.S. (2009). Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems. Journal of Agricultural and Food Chemistry, 57(19), 9011-9015.
  • 24. Kukurová, K., Constantin, O.E., Dubová, Z., Tobolková, B., Suhaj, M., Nystazou, Z., Rapeanu, G., Ciesarová, Z. (2015). Acrylamide content and antioxidant capacity in thermally processed fruit products. Potravinarstvo, 9(1), 90-94.
  • 25. Lee, H.S., Nagy, S. (1990). Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems. Journal of Food Processing and Preservation, 14(3), 171-178.
  • 26. Leong, S.Y., Oey, I. (2012). Effects of processing on anthocyanins, carotenoids and vitamin C in summer fruits and vegetables. Food Chemistry, 133(4), 1577-1587.
  • 27. Mauron, J. (1981). The Maillard reaction in food; a critical review from the nutritional standpoint. Progress in Food and Nutrition Science, 5(1-6), 5-35.
  • 28. Morales, F.J. (2008). Process-induced food toxicants: Occurrence, formation, mitigation, and health risks. 2008, In Hydroxymethylfurfural (HMF) and Related Compounds. John Wiley & Sons, Inc., pp. 135-174.
  • 29. Mottram, D.S., Wedzicha B.L., Dodson A.T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448-449.
  • 30. Nguyen, H.T., Peters, R.J., Van Boekel, M.A. (2016). Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type. Food Chemistry, 192, 575-585.
  • 31. Nursten, H. (2005). The Maillard Reaction: Chemistry, Biochemistry and Implications, The Royal Society of Chemistry: Cambridge, Atheneum Press Ltd, Gateshead, Tyne and Wear, UK., pp. 90-99.
  • 32. Ölmez, H., Tuncay, F., Özcan, N., Demirel, S. (2008). A survey of acrylamide levels in foods from the Turkish market. Journal of Food Composition and Analysis, 21(7), 564-568.
  • 33. Rada-Mendoza, M., Olano, A., Villamiel, M., Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. Food Chemistry, 2002, 79(4), 513-516.
  • 34. Roach, J.A., Andrzejewski, D., Gay, M.L., Nortrup, D., Musser, S.M. (2003). Rugged LC-MS/MS survey analysis for acrylamide in foods. Journal of Agricultural and Food Chemistry, 51(26), 7547-7554.
  • 35. Sahamishirazi, S., Moehring, J., Claupein, W., Graeff-Hoenninger S. (2017). Quality assessment of 178 cultivars of plum regarding phenolic, anthocyanin and sugar content. Food Chemistry, 214, 694-701.
  • 36. Stadler, R.H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P., Riediker, S. (2002). Acrylamide from Maillard reaction products. Nature, 419(6906), 449-450.
  • 37. Swedish National Food Administration. (2002). Information about acrylamide in food, [www.slv.seS].
  • 38. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., Törnqvist, M. (2000). Acrylamide: A cooking carcinogen?. Chemical Research in Toxicology, 13(6), 517-522.
  • 39. Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., Tornqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry, 50(17), 4998-5006.
  • 40. Weisshaar, R., Gutsche, B. (2002). Formation of acrylamide in heated potato products-model experiments pointing to asparagine as precursor. Dtsch Lebensmitt Rundsch, 98(11), 397-400.
  • 41. Yasuhara, A., Tanaka, Y., Hengel, M., Shibamoto, T. (2003). Gas chromatographic investigation of acrylamide formation in browning model systems. Journal of Agricultural and Food Chemistry, 51, 3999-4003.
  • 42. Yaylayan, V.A., Stadler, R.H. (2005). Acrylamide formation in food: a mechanistic perspective. Journal of AOAC International, 88(1), 262-267.
  • 43. Yaylayan, V.A., Wnorowski, A., Locas, C.P. (2003). Why asparagine needs carbohydrates to generate acrylamide. Journal of Agricultural and Food Chemistry, 51(6), 1753-1757.
  • 44. Yu, M., Ou, S., Liumengzi, D., Huang, C., Zhang, G. (2013). Effect of ten amino acids on elimination of acrylamide in a model reaction system. African Journal of Food Science, 7(9), 329-333.
  • 45. Zhang, Z., Zou, Y., Wu, T., Huang, C., Pei, K., Zhang, G., Ou,S. (2016). Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels. Food Chemistry, 190, 832-835.
  • 46. Zyzak, D.V., Sanders, R.A., Stojanovic, M., Tallmadge, D.H., Eberhart, B.L., Ewald, D.K., Villagran, M.D. (2003). Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51(16), 4782-4787.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-a118ff68-b9e7-4d34-8211-66d2c814ef51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.